

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm228 1

ISSN: 1861-1680

XML for Model Specification in Neuroscience

An Introduction and Workshop Summary

Sharon Crooka*, David Beemanb, Padraig Gleesonc and Fred Howelld

a Department of Mathematics and Statistics and School of Life Sciences, Arizona State University, Tempe,
Arizona, USA

b Department of Electrical and Computer Engineering, University of Colorado, Boulder, Colorado, USA
c Department of Physiology, University College, London, UK

d Institute for Adaptive and Neural Computation, University of Edinburgh, Edinburgh, UK

*Corresponding Author: Tel: + (480)965-0403, Fax: + (480)965-0461, email: sharon.crook@asu.edu

urn:nbn:de:0009-3-2282

Abstract. One of the main roles of the Neural Open Markup Language, NeuroML, is to facilitate cooperation in
building, simulating, testing and publishing models of channels, neurons and networks of neurons. MorphML,
which was developed as a common format for exchange of neural morphology data, is distributed as part of
NeuroML but can be used as a stand-alone application. In this collection of tutorials and workshop summary, we
provide an overview of these XML schemas and provide examples of their use in down-stream applications. We
also summarize plans for the further development of XML specifications for modeling channels, channel
distributions, and network connectivity.

Keywords: XML, NeuroML, ChannelDB, GENESIS, MorphML, neuroConstruct

Citation: Crook S, Beeman D, Gleeson P, Howell F (2005). XML for Model Specification in Neuroscience - an
Introduction and Workshop Summary. Brains, Minds and Media, Vol. 1, bmm228 (urn:nbn:de:0009-3-2282).

Licence: Any party may pass on this Work by electronic means and make it available for download under the
terms and conditions of the Digital Peer Publishing Licence. The text of the licence may be accessed and
retrieved via Internet at http://www.dipp.nrw.de/lizenzen/dppl/dppl/DPPL_v2_en_06-2004.html.

An Introduction to XML in Neuroscience - Sharon Crook

What is the eXtensible Markup Language (XML)1? XML is a portable format for computer documents
where data are surrounded by text descriptions called tags. Tags are ordinary text that is meant to
provide a clear, concise and understandable context for data. Due to this self-describing
representation, programs can parse documents easily. The tags define data objects called language
elements, and the hierarchy of relationships among the language elements can be used to create an
XML schema.

1 XML, http://www.w3.org/XML

XML for Model Specification in Neuroscience © 2005 Crook et al.

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm228 2

What are some of the potential benefits of XML? Because each language element in an XML schema
can be equivalent to an object class in a programming language such as Java or C++, XML facilitates
the generation of code for reading and writing data documents. The use of XML also makes it easy to
validate documents and create database tables for data element storage and access. All of these
aspects of XML lead to its greatest benefit—its use facilitates communication and collaboration.

Are there XML applications for neuroscience data or modeling? The following list provides examples
of applications under development that can be used for representing neuroscience data and models.
The first two are described in more detail in subsequent sections.

NeuroML2 supports the use of declarative model specifications for neuroscience modeling efforts at
different scales, from intracellular mechanisms to networks of reconstructed neurons.

MorphML3 provides a common format for exchange of neuronal morphology data. It can also be used
to specify cell structure for modeling efforts as part of NeuroML.

BrainML4 is an application for representing time series data, spike trains, experimental protocols, and
other data relevant to neurophysiology experiments.

SBML5 (Systems Biology Markup Language) is an application for specifying models of biochemical
reaction networks such as metabolic networks, cell-signaling pathways and gene regulatory networks.

CellML6 is designed for the specification of biological models of cellular and sub-cellular processes
such as calcium dynamics, metabolic pathways, signal transduction, and electrophysiology.

MathML7 provides the means for describing the structure and content of mathematical notation in
order to serve, receive, and process mathematics on the web. Other XML applications often use
MathML language elements for representing mathematical equations.

Many of these XML applications have associated tools for data analysis, data visualization, simulation,
or data storage. Some also have tools for further development of the XML application itself. For
example, the NeuroML Development Kit8, described in more detail in the next section of this article,
can be used to parse and generate NeuroML to and from a Java object tree.

An additional benefit of using XML is the availability of commercial and free development software. For
example, there are many commercial products available for schema development, validation, and
documentation such as Altova’s XMLSpy9. Software such as Sun’s Java Architecture for XML Binding
(JAXB)10 can be used to bind an XML schema to schema-derived classes and will create an
application program interface for reading and writing XML documents.

2 NeuroML, http://www.neuro.org/
3 MorphML, http://www.morphml.org/
4 BrainML, http://www.brainml.org/
5 SBML, http://www.sbml.org/
6 CellML, http://www.cellml.org/
7 MathML, http://www.w3.org/Math
8 NeuroML Develpoment Kit, http://www.neuroml.org/projects/ndk.html
9 Altova’s XMLSpy, http://www.altova.com/
10 Sun’s Java Architecture for XML Binding (JAXB), http://java.sun.com/xml/jaxb

XML for Model Specification in Neuroscience © 2005 Crook et al.

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm228 3

What are the potential liabilities of XML? It should be noted that most of the advantages of XML can
be accomplished with good discourse, good design and good documentation. The major liability of
XML is that files are extremely verbose compared to non-XML formats, so performance may suffer. In
addition, the same features that make XML valuable for communication and collaboration can make it
more difficult to protect private data.

An Introduction to NeuroML - Fred Howell

NeuroML is an ongoing effort to improve uptake of XML for software relating to neuroscience
modeling. It is not a single standard XML language - rather a collection of related XML projects for
modeling different aspects and levels of neural systems, from intracellular mechanisms and ion
channels to networks of reconstructed neurons. This tutorial introduces the aims, techniques and
future plans of the NeuroML project.

Aim

The aim of the NeuroML project is to move model specifications from programs to a declarative XML
format.

The challenges

Building working models of the circuits of neural tissue is one of the best ways of furthering our
understanding of how these complicated biological machines work. But models are often themselves
complex programs, understandable only to the researcher who developed them. In order to give these
models a longer shelf life and to make them more transparent, it is useful to express such models in a
declarative fashion. XML is an ideal representation for the complex structure of models, as it is an
open file format and is capable of representing arbitrarily complex structures. However, devising a
standard language for models in neuroscience is challenging because of the variety of levels of scale
and the various amounts of detail in models.

The schematic of the interactions in a synapse (Collins et al 2005) shown in Figure 1 reveals some of
the complex 3D interactions among intracellular pathways, receptors and the synaptic machinery.
SBML provides a method for describing the basics of intracellular pathway modeling but provides no
formalism for the spatial aspects of 3D interactions. It also does not include support for modeling the
electrical properties of receptors, a critical aspect of most neural models.

Models of single neurons often include detailed morphology data from reconstructed cells. Detailed
models of dendrites also require data from electron microscopy (EM) level reconstructions. (Figure 2
below shows an EM slice through rat hippocampus.) The MorphML XML standard was designed as an
exchange format for morphology data, to complement the existing proprietary formats of
reconstruction systems such as Neurolucida. In addition to morphology data, building a working model
of a neuron requires access to physiology data including information about the types and distributions
of ion channels throughout the cell membrane. It would help the modeling task substantially if more
experimental data were available in open file formats. XML based formats for experimental metadata,
as well as a cultural shift towards data publication will help this process.

XML for Model Specification in Neuroscience © 2005 Crook et al.

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm228 4

Figure 1 - Interactions in a synapse (from Collins et al 2005). Figure reprint kindly permitted by the
American Society for Biochemistry and Molecular Biology.

Figure 2 - EM of slice from rat hippocampus (data from Synapse Web11, Medical College of Georgia)

11 Synapse Web, http://synapses.mcg.edu/

XML for Model Specification in Neuroscience © 2005 Crook et al.

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm228 5

Connectivity data is especially hard to obtain, but essential to building network models. Figure 3
shows an example model of part of the cerebellar cortex circuitry (Howell et al. 2000). This model was
built using a script program for the GENESIS12 simulator; the aim of NeuroML is to allow networks
such as this to be specified declaratively in XML.

 Figure 3 – Example from cerebellar cortex circuitry based on model in [2]

Why XML?

One important aspect of XML is that it provides a language-independent way to store structured
information. It has achieved huge industry momentum because of its simplicity and flexibility as well as
its relation to the HTML standard for web pages. It is used for representing data rather than as a
programming language; because of this, using XML for model specification encourages declarative
specifications rather than code. This facilitates automated transformation of model specifications to
multiple other formats; programs have to be recoded by hand.

Why not XML?

There are a number of disadvantages to using XML as a representation.

• It is more cumbersome to edit by hand than programming language sources because of its
redundancy. Many prefer to use it as an output file format for software tools.

• The format is verbose, and file sizes can be significantly larger than binary formats. Because of
this, many tools compress the XML source.

12 GENESIS, http://www.genesis-sim.org/

XML for Model Specification in Neuroscience © 2005 Crook et al.

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm228 6

• It is slower to parse than ad hoc text formats. However, XML parsing libraries are available for
every major programming language.

• It is not suitable for binary data. Although one can embed binary data in an XML file using the
BASE64 coding, this defeats the original objective of creating readable files.

For the purposes of designing a common exchange format, however, the advantages of clarity and
self-description outweigh the disadvantages.

Components of a simulation model

A typical simulation model in neuroscience is composed of scripts for setting up the model, parameter
search routines, as well as custom code as shown in Figure 4. Often the simulation parameters are
set within the code, and other researchers must read the code to find the details of the model. In order
for other researchers to simulate the model, they must install the same version of the simulator, and
compile any additional extensions.

Figure 4 – Schematic of typical model

Aiming towards declarative model specifications

Ideally, the model specification and parameters would be separated from the simulation code and
expressed in a declarative form rather than as a program as shown in Figure 5. This would make
models easier to understand and also remove the dependence on a particular version of the simulator.
It is possible for another simulator to run a declarative model, but a model expressed as a program
has to be rewritten to run on another simulator.

XML for Model Specification in Neuroscience © 2005 Crook et al.

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm228 7

 Figure 5 – Schematic of ideal model

Publishing models

Models are currently more like programs than publications; however, models expressed declaratively
in XML are more likely to outlast the simulator they were written for. Robert Gentleman from Harvard
has launched a campaign for reproducible research noting that many papers based on complex
computer models do not include enough information to allow other researchers to reproduce the
results; the real information about the model is embedded in the model code which is not often
published. He notes that if published results are not easily reproducible by other researchers, the
paper becomes more like an advertisement for the research than being the research itself. Moving
model specification to XML makes the publication process simpler, but ideally the model specification
should also include links to any experimental data used to derive parameters or validate results. The
ModelDB13 database is a valuable repository of published models.

Why is standardization for neural models hard?

The problem of standardizing model descriptions for neuroscience models is difficult for several
reasons. As demonstrated above, neural modeling is done at a variety of levels of scale, from protein
interactions to large-scale networks of neurons. In addition, different simulators have different and
changing capabilities that create a moving target for attempts to create any standards.

Union or intersection?

A central design question for XML formats for neural models is whether we should attempt to address
the intersection of capabilities of a number of simulators and standardize one aspect of modeling; or
alternatively, if we should address the union of capabilities and represent all aspects of all possible
models.

13 ModelDB, http://senselab.neuron.yale.edu/

XML for Model Specification in Neuroscience © 2005 Crook et al.

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm228 8

The advantage of the intersection approach is that it is manageable; by restricting the scope to one
modeling method, it becomes possible to converge on an agreed notation for one class of models. For
example, the SBML standard provides a common notation for differential equation models of
intracellular pathways, and the MorphML standard provides a specification for dendritic and axonal
structures in neurons. The disadvantage of the intersection approach is that it only provides for a small
part of the model with the rest of the model specification coded in a simulator specific way, perhaps
using script programs.

The essence of the union approach is for the XML model specification to be a complete description of
the model - it can be used as the file format for a simulator. The advantage of this is that no additional
files are needed to run the model; the XML is a complete description. The disadvantage is that
attempting to define this "standard" would be a Sysiphan task. The only way it would work would be for
each simulator developer to "just use XML" and to code representations in simulator-specific XML.

The intersection approach is most attractive for making the resulting model descriptions useable by a
number of tools with overlapping functions; however, it will only encompass a subset of model
descriptions which will often require supplemental code or extensions to the XML standard to actually
run. Simulator developers are likely to migrate towards their own XML formats, making the union of
XML formats inevitable. Thus the questions for future XML model descriptions in neuroscience are:

• Which types of models are simple enough and stable enough for a fixed XML standard to be
appropriate?

• For all the other parts of a model for which no standard exists, should they be expressed in
arbitrary XML or should they at least use a common method for serializing object models?

What is "NeuroML"?

The NeuroML project was started to address the issues of model specification using XML. The
website includes documentation for a standard way to map object models to XML, with a sample
implementation provided in a Java development kit. The emphasis is on making it easy to define any
object model and to serialize it in XML. Thus NeuroML addresses the union problem of expressing any
level of model, with the standard upgraded from "just use XML" to "use XML which represents a
systematic coding of an object tree". The NeuroML Development Kit performs this systematic coding
automatically so that only a single line of code is required to read or write an arbitrarily complex object
tree.

Within NeuroML, the focus on defining object models first, rather than on defining the particular
sequence of XML elements and attributes (as expressed by an XML Schema), is important. This
approach is similar to the approach taken by the SBML, MAGE-ML14, and Open Microscopy15 teams.
The problem with starting by defining XML tags first is that the resulting format requires custom code
to parse. It is harder to write code that copes with arbitrary XML than it is to write generic code that
deals with arbitrary object models. Important applications of such generic code are user interfaces that
can cope with arbitrary object models (e.g. Catacomb by R. Cannon16) and parsers.

14 MAGE-ML, http://www.mged.org/Workgroups/MAGE/mage.html
15 Open Microscopy, http://www.openmicroscopy.org/
16 Catacomb, http://www.enorg.org/

XML for Model Specification in Neuroscience © 2005 Crook et al.

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm228 9

The problem of defining standards for particular types of models remains. The NeuroML Development
Kit includes sample object models for channel, cell and network levels; it is likely that the most
appealing subjects for standardization are the channel and single compartmental neuron
specifications since the techniques used by many simulators to model at these levels are agreed and
stable. However, different simulators implement network model descriptions differently. One of the
problems with network descriptions is that they often depend on the detail at lower levels. For
example, a simulator-independent method for specifying a connectivity rule based on receptor
densities at the dendrite would require standards for all levels from networks down to channels.

Other XML languages

As mentioned in the introduction, other XML standards relevant to model specification in neuroscience
include SBML for intracellular pathway models, and MathML for equations. BrainML is a candidate
schema for representing experimental data. In addition, the Axiope17 project has developed an object
model editor for experimental metadata.

Practicalities

Question: I'm creating a simulator and I'd like to use NeuroML- what do I do?

• Separate out the declarative aspects of the model specification.

• Serialize the model into XML, using the NeuroML development kit (in Java) or your own code.

• If any other developers are creating similar models, see if you can agree on a common set of
classes to describe the models.

The NeuroML Development Kit

The NeuroML home page includes the Java-based development kit for defining object models and for
generating and reading XML. It uses a technique called data binding for automating the process of
generating and parsing XML from objects in memory. This reduces the programmer burden of reading
arbitrarily complex XML model descriptions to using a single line of code and makes defining object
models as simple as defining classes. The resultant XML uses class and field names, but contains no
Java-specifics (unlike the basic serialization routines provided with Java and other programming
languages such as Python).

• Your program can read in an XML document using:

Object o = XMLIn("file.xml");

• And write one using:

Object o = new MyComplexStructure();
XMLOut(o,"file.xml");

17 Axiope, http://www.axiope.com/

XML for Model Specification in Neuroscience © 2005 Crook et al.

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm228 10

Example network definition

This example taken from the NeuroML Development Kit defines a "Network" as having a set of
elements (which can be neurons or other networks), and a set of projections.

package neuroml.model.network;
import neuroml.core.*;
public class Network extends Element {
 /** A network has a set of elements - can be populations or
 individual cells*/
 public Set elements = new Set("ElementRef");
 /** A network also defines a set of projections between
 elements */
 public Set projections = new Set("Projection");
}

The example below defines a simple 3D grid for the structure of a population of cells - just x, y and z
sizes.

public class Grid3DStructure extends PopulationStructure {
 public int xsize=1;
 public int ysize=1;
 public int zsize=1;
}

Schema format

The development kit uses a restricted subset of Java as a schema definition language. This includes:

• Simple types: int, double, string

• Collections, references

• Classes and inheritance

The created schema is provided in alternative formats such as XML-Schema and UML diagrams using
reflection. The choice of schema format is less important than the choice of starting with an object
model and generating the XML in a systematic fashion. The NeuroML website includes details on the
XML coding chosen by the development kit.

The place of embedded scripts in model descriptions

Scripts are extremely convenient for coding loops for running simulations and for setting up ad hoc
connectivity patterns, but including code in a model description makes that description less portable. It
is likely that cutting edge models will always include an element of scripting. Thus the aim should be to
express as much as possible of a model description declaratively, but accept that some models will
always be programs.

XML for Model Specification in Neuroscience © 2005 Crook et al.

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm228 11

Future plans

Currently, many simulators are adopting their own XML formats for serializing model descriptions. As
outlined above, common standards are working well where the domain is stable and agreed, but
questions remain concerning how much standardization is useful for other domains. It is likely that the
next modeling domain where standards will be addressed will be in the development of ChannelML for
specification of ion channel models and NeuronML for single cell modeling. More experience with
formalisms for building network models will be needed before a NetworkML specification will be
feasible.

NeuroML for Model Specification in ChannelDB and GENESIS - David
Beeman

Introduction

ChannelDB18 (Beeman an Bower 2004) is an implementation of a database of ionic conductance
models (channels) to be used in biologically realistic neuronal simulations. When choosing a
representation for such models, a problem arises: the procedure for constructing a single model
can be described in many different ways.

Although a model may be unambiguously specified by a set of equations and parameter values, it is
the function of a simulation script to tell the simulator how to implement the model. Because of
differences in simulator design, simulation scripts for GENESIS (Bower and Beeman 1998) and
NEURON19 (Hines and Carnevale 1997) will look quite different from each other. Consequently, it is
very difficult to convert a simulation written for one simulator to one for another.

The solution to this problem will be obvious to the participants of this workshop: use XML to establish
a standard format for a declarative representation, NOT a simulator-dependent procedural
representation.

An example

As an example, consider the set of equations used to describe the Hodgkin-Huxley model of the
potassium conductance found in the squid giant axon (Hodgkin and Huxley 1957).

18 channelDB, http://www.modelersworkspace.org/channeldb/ChannelDB.html
19 NEURON, http://www.neuron.yale.edu/

XML for Model Specification in Neuroscience © 2005 Crook et al.

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm228 12

Here, the conductance GK of this channel is given in terms of a gating variable n that satisfies a first-
order differential equation involving two voltage-dependent rate variables. Three possible ways to
specify the rate variables for this model would be to

• Represent the equations in a form that can be parsed into statements that can be evaluated by a
simulator or a by computer language such as Java or C++.

• Store tabulated values of the rate variables.

• Use a parameterized form (A + BV) / (C + D exp((E + V)/F)) and store only the six
parameter values.

The ChannelDB solution

The ChannelDB implementation allows all three of the representations above, and is based on the
XML format used in the NeuroML model description language (Goddard et al. 2001). The main
features are:

• XML representation of a Java Hodgkin-Huxley object with attributes for maximal conductance, and
a set of gates and their exponents.

• Gate objects have an attribute indicating dependence on voltage or an ion concentration, and
objects for the forward and backward rate variables.

• The NeuroML development parser converts between XML channel representations and Java
objects.

• Simple Java string manipulation commands are used to produce a simulation script from
information in the fields of the DBChannel object.

• The prototype database and interface creates commented GENESIS scripts from stored XML
channel descriptions.

NeuroML representation of the K channel

This procedure results in the following XML representation for the Hodgkin-Huxley model potassium
conductance:

<neuroml class="DBChannel" description="Hodgkin-Huxley squid K
 channel"
 author="Dave Beeman"
 keywords="Hodgkin-Huxley potassium squid delayed rectifier"
 uniqueID="10262778758662F22@dogstar.colorado.edu"
 notes="An implemention of the GENESIS K_squid_hh channel"

XML for Model Specification in Neuroscience © 2005 Crook et al.

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm228 13

 Erest="-0.07V">
 <channels>
 <channel name="K_squid_hh" class="HHChannel"
 permeantSpecie="K" Erev="0.09V" Gmax="360.0S/m^2"
 ivlaw="ohmic">
 <gates>
 <gate name="X" class="HHVGate" timeUnit="sec"
 voltageUnit="V"
 vmin="-0.1" vmax="0.05"
 instantCalculation="false" useState="false" power="4">
 <forwardRate class="ParameterizedHHRate" A="-600.0"
 B="-10000.0" C="-1.0" D="1.0" E="0.060" F="-0.01"/>
 <backwardRate class="ParameterizedHHRate" A="125.0"
 B="0.0 C="0.0" D="1.0" E="0.07" F="-0.08"/>
 </gate>
 </gates>
 <log author="Dave Beeman" date="Jul 9, 2002 11:11:15 PM"
 literatureReference="A.L. Hodgkin and A.F. Huxley,
 J. Physiol. (Lond) 117, pp 500-544 (1952)">
 </log>
 </channel>
 </channels>
</neuroml>

Some classes defined for ChannelDB

NeuroML provides a number of templates, or classes, that may be used for this description. In the
example above, the K_squid_hh channel is derived from the HHChannel class, which has certain
properties such as a reversal potential Erev, and a conductance density Gmax. It also possesses a
voltage activated Hodgkin-Huxley gate, derived from the HHVGate class. The gate contains objects
representing the forward and backward rate variables. In this case, the equations for the rate variables
are represented with a parameterized form, derived from the ParameterizedHHRate class. Other
objects and attributes specify descriptive information about the model that would be useful in a
database search.

Some of the NeuroML classes used with ChannelDB are:

DBChannel: Wrapper class that is used to contain any channel model that is stored in ChannelDB,
along with some descriptive information.

HHChannel: Class used for all the Hodgkin-Huxley type channels in the database.

HHVGate: Used as a member of the gates set of a HHChannel. It contains forward and backward rate
objects that depend on voltage, as well as some additional fields to describe the gate.

HHCGate: An ion concentration-dependent gate, analogous to the voltage-dependent HHVGate. It
provides an additional field for a reference to the object that provides the source of the ion
concentration.

XML for Model Specification in Neuroscience © 2005 Crook et al.

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm228 14

HHRate: A superclass for the specialized forms for the rate variables.

ParameterizedHHRate: A subclass of HHRate that expresses rate variables in a parameterized form
typical of many Hodgkin-Huxley type rate equations where rate equation is (A + BV) / (C + D exp((E +
V)/F)).

EquationHHRate: A subclass of HHRate that expresses the rate variables as equations.

TabulatedHHRate: A subclass of HHRate that allows a gate's forwardRate or backwardRate to be
specified by a table at equally spaced voltage (or ion concentration) points.

ConcenPool: Describes a single shell model for a ion concentration pool with a buildup of
concentration proportional to an incoming current and a time constant for decay. The object providing
the source of concentration to a HHCGate is typically formed from this class. The source of currents is
provided by a set of objects of class CurrentSource.

CurrentSource: Used by ionic concentration pools to provide information about the object that
provides an ionic current.

Unfinished business and open questions

There is more yet to be done to establish a complete simulator-independent XML representation for
ion channel models. It is hoped that this workshop will provide a start for a cooperative effort to
address some of the following issues:

• Extend NeuroML to provide representations for more detailed multi-shell models of calcium
diffusion.

• Implement a more sophisticated representation of literature references than the simple string that
is currently used in the NeuroML software. (We have proposed a schema for the Modeler's
Workspace based on BibTeX.)

• Create software to convert ChannelDB descriptions to NEURON and other simulator formats.

• Implement the HHCVGate, a two-dimensional gate depending on both voltage and concentration.
(Note that the Traub Ca-dependent K channel model uses a form that can be expressed as a
product of a HHVGate and a HHCGate.)

• Implement Borg-Graham or Lytton-Sejnowski temperature-dependent channel models with the
NeuroML ThermodynamicHHVGate.

• Is there a better way for a concentration-dependent channel model to reference the models that
provide the source of ionic currents and concentrations?

• NeuroML allows any string to be used for the equation used in the EquationHHRate. How much
standardization should there be for the equation format and for the names of the independent
variables and parameters?

XML for Model Specification in Neuroscience © 2005 Crook et al.

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm228 15

NeuroML and GENESIS 3 development plans

The GENESIS simulator is undergoing a major redevelopment effort, and will use an XML
representation for model specifications. Standards that will emerge from this workshop will play an
important role in GENESIS version 3.

Figure 6 shows the components of GENESIS 2 as seen by the GENESIS user. Although GENESIS
and its scripting language produce modular object-oriented simulations that are easy to modify and
extend, this is not the case with the source code for GENESIS 2. The core modules of GENESIS were
written in the late 1980's in C, and the modules are much more tightly coupled than the diagram would
suggest.

 Figure 6 – Components of GENESIS 2

Upinder Bhalla of the National Centre for Biological Sciences in Bangalore, India wrote the X Windows
XODUS GUI interface for GENESIS and did much of the initial GENESIS development. He has been
rewriting the GENESIS base code in C++ as the Messaging Object Oriented Simulation Environment

XML for Model Specification in Neuroscience © 2005 Crook et al.

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm228 16

(MOOSE)20. This reimplementation in an object-oriented language makes it possible to "unbundle" the
components of GENESIS as shown by the dashed lines, and to create other interfaces to the
GENESIS core.

MOOSE provides:

• Improved Messaging between GENESIS objects

• Faster, smaller, cleaner implementation

• Portability to MS Windows and non-UNIX platforms

• Improved equation solvers

• Ability to use multiple script parsers and user interfaces

GENESIS 3 will add:

• A modern graphical user interface

• XML representation of models

• Backwards compatibility with GENESIS 2

• Tutorials and educational applications

Figure 7 shows how using the MOOSE core for GENESIS 3 will allow multiple external interfaces to
GENESIS 3.

There are two main priorities for GENESIS 3 development. The first is to re-implement the X Windows
graphical user interface of GENESIS in Java. This will allow the use of more modern user-friendly
interfaces and will allow GENESIS to be used on non-UNIX platform such as Windows. A Java GUI for
GENESIS will also allow tutorial simulations to be run over the Internet from a GENESIS server. The
second is to develop XML-based representations of channel, cell, and network models. Although the
present GENESIS cell parameter file format will continue to be supported for backwards compatibility,
we plan to use a standard simulator-independent XML model description to import models into
GENESIS. This will make it possible for modelers to more easily exchange simulations and simulation
components, regardless of the simulator used.

20 MOOSE – Messaging Object Oriented Simulation Environment, http://www.genesis-sim.org/GENESIS/newgrant/MOOSE-
plans.html

XML for Model Specification in Neuroscience © 2005 Crook et al.

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm228 17

 Figure 7 - External interfaces to GENESIS 3

MorphML: An XML Application for Neuronal Morphology Data - Sharon
Crook

Introduction

Neuronal morphology data are important for the study of many areas of neuroscience including
development, aging, and pathology and are crucial for the development of structurally accurate
compartmental models (Cannon et al. 2002). The complexity of problems in neuroscience often
requires that research across disciplines be combined. However, existing neuroanatomical data have
been obtained using many different neuron tracing systems. Generally, these systems represent
neuron arborizations using a collection of points, diameters and connections in three dimensions.

MorphML was developed as a common data format for neuronal morphology data. It can be used
separately from NeuroML as a stand-alone XML application, but it can also be used as a
representation for neuron morphology for compartmental models described using NeuroML. In

XML for Model Specification in Neuroscience © 2005 Crook et al.

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm228 18

particular, MorphML is intended to facilitate data archiving, data and model exchange, database
creation, and data and model publication for morphology data (Qi and Crook 2004).

Figure 8 – Example of a MorphML element

An example

The MorphML language elements describe objects used to represent neuron cell bodies, branching
dendrites and axons, spines and varicosities, fiducials, etc. An example of XMLSpy generated
documentation for the language element for a segment is shown in Figure 8. Segments are connected
to represent branching structures, where each segment is a truncated cone or frustum. The geometry
of a segment is determined by the cross-sections at the ends of the segment. Each cross-section is
defined by the 3D location (x, y and z) of the center point as well as an associated diameter. Note that
some applications require that the diameters at the opposite ends of a segment have the same value
so that the segments are all cylinders.

XML for Model Specification in Neuroscience © 2005 Crook et al.

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm228 19

Figure 9 – Schematic of branching structure

An example of a branching structure is shown in Figure 9. The XML fragment below provides a
representation for this branching structure in MorphML.

<segments>
 <!-- Segment: Dendrite, ID: 1-->
 <segment id=”1” name=”Dendrite”>
 <proximal x=”0” y=”0” z=”0” diameter=”4”/>
 <distal x=”16” y=”0” z=”0” diameter=”4”/>
 </segment>
 <!-- Segment: BranchA, ID: 2-->
 <segment id=”2” name=”BranchA” parent=”1”>
 <proximal x=”16” y=”1” z=”0” diameter=”2”/>
 <distal x=”32” y=”9” z=”0” d=”2”/>
 </segment>
 <!-- Segment: BranchB, ID: 3-->
 <segment id=”3” name=”BranchB” parent=”1”>
 <proximal x=”16 y=”-1” z=”0” diameter=”2”/>
 <distal x=”32” y=”-9” z=”0” diameter=”2”/>
 </segment>
</segments>

Applications of MorphML

Currently, MorphML is being used as the format for data and model specification in a number of
software applications. One example is the Virtual Ratbrain Project21 which includes a database for
peer reviewed 3D cellular anatomical data of the rat brain as well as visualization and analysis tools.
In this project, data is stored in MorphML format, and one of the available tools is a MorphML Viewer.
NeuroConstruct22, which is introduced below, is another application using MorphML. In addition, both
the NEURON simulation environment and GENESIS are including the MorphML format in future
developments.

21 Virtual Ratbrain Project, http://www.ratbrain.org/
22 NeuroConstruct, http://www.neuroconstruct.org/

XML for Model Specification in Neuroscience © 2005 Crook et al.

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm228 20

The practical use of XML specifications- Padraig Gleeson

Introduction

XML has emerged over the past few years as the de-facto standard for information exchange on the
Internet. Data are formatted so that a target application knows exactly where each piece of information
can be found. In the field of neuroscience too, this way of exchanging information can be useful, as
the number of published models illustrating different aspects of the functioning of the nervous system
grows. Many papers contain detailed information on cell morphologies, connectivity, the mechanics of
voltage-gated ion channels, and the distribution of channels on neuronal membranes. Currently this
information can be published in tabular form in the paper itself, or in accompanying files in one of a
number of different simulator formats. Model data from these papers, which might be reusable for
other models, can be extracted from the files only if the syntax of the simulator scripting language is
known and the scripts are well written.

The NeuroML, MorphML, and ChannelML initiatives seek to codify this knowledge to make it easier to
publish data in a form that will be readily usable by the neuroscience community in general. We
describe here how a computational neuroscience application might use models published using these
specifications.

Linking NeuroML, MorphML, and ChannelML specifications

Neuroscientists are interested in relating experimental findings at the cellular and sub-cellular levels to
the overall behavior of neurons. Models that are developed using experimental anatomy and
electrophysiology data are often published, and ideally this information should be easily accessible for
a wide range of scientists to analyze and reuse for their own areas of study. Any application for the
general neuroscience community should present the concepts dealing with cell morphology and cell
processes in a form that is familiar for neuroscientists and should leave the computational details in
the background as much as possible. An intuitive user interface for creating the cell models would also
increase the appeal of such an application.

Cell morphology

Many computational neuroscience models containing detailed morphological reconstructions of cells
like that shown in Figure 10 have been published in recent years. See for example (De Schutter and
Bower 1994) (Poirazi et al. 2003). The cell morphology data are usually provided in the format
associated with the simulation environment, and such biophysical parameters as channel densities are
usually embedded in the file that specifies the morphology. This simulator-dependent format makes it
quite difficult to incorporate a cell model developed in NEURON, for example, with a cell that has been
developed for the GENESIS environment. Separation of the morphology from the channel distribution
would allow for greater flexibility for different investigators to study cell function under different
electrical conditions, for example with different channel densities or additional membrane
conductances.

XML for Model Specification in Neuroscience © 2005 Crook et al.

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm228 21

Figure 10 – Purkinje cell (from De Schutter and Bower 1994)

Cell processes

Electrophysiological processes such as voltage-gated ion channels and synaptic mechanisms on the
membranes of neurons are responsible for cell firing behavior. These processes can be represented
by systems of differential equations that are solved by the various simulation platforms. The
implementation of these simulations can be quite complex, and the scripts are difficult to read for
anyone not familiar with the syntax of the simulator scripting language. However, most neuroscientists
are familiar with the main elements of the cell process models such as the Hodgkin-Huxley formalism
for the differential equations, the maximum conductance for a channel, etc.

XML for Model Specification in Neuroscience © 2005 Crook et al.

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm228 22

Figure 11 demonstrates how the XML representation for the important aspects of a model might be
handled. Templates are created for important cellular processes common to many computational
neuroscience models such as double or single exponential synaptic mechanisms or Hodgkin-Huxley
type channel mechanisms. The essential parameters that take the model from a theoretical framework
to an instance describing a specific experimentally investigated process are required to complete the
template. Documentation should make the required fields underlying the model formalism
unambiguous. Different sets of parameters lead to differing instances of similar cellular processes.
The XML file containing the data, formatted according to the template, can then be published, and it is
instantly accessible to any application familiar with the file format. A mapping of the model to a number
of simulation environments can be associated with each model. This mapping should be well tested
and should represent an implementation of the model in line with the best practices of the simulation
environment.

Figure 11 – Schematic of XML model representation

Investigators need an application for gathering these published models together, linking cellular
processes with cell morphology, mapping the cell models into one or more of the native simulation
scripting languages, and running the simulations.

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm228 23

ISSN: 1861-1680

neuroConstruct: An application to facilitate handling of XML specifications

The Silver Laboratory in the Department of Physiology at University College London is developing an
application, neuroConstruct, that will facilitate the linking of the XML model templates as described
above. neuroConstruct features a 3D interface for visualizing cell morphologies and imports
morphology data in various existing formats, including MorphML. Channel mechanisms can be placed
on cells to form biologically realistic neuronal models. Networks of these cell prototypes can then be
constructed, and the final model can be mapped to various simulation formats such as GENESIS or
NEURON for execution. Development of neuroConstruct is taking place in parallel with the
development of XML standards and provides an example of how real applications can make use of the
emerging standards.

Current Issues and Future Development: A Workshop Summary -
Sharon Crook

After much discussion, one of the items of consensus was that it is worthwhile for the neural modeling
community to create a common data format under the umbrella of NeuroML for many of the most
widely used model formalisms. Because researchers focus on anatomical, physiological, or modeling
characteristics at different levels of scale (e.g. sub-cellular, cellular, circuit and system levels), the
easiest way to develop NeuroML will be to create several domain-specific description languages such
as MorphML and ChannelML and then link them through NeuroML. This modular approach will also
help potential users understand the underlying schema and will make it easier to take advantage of
existing XML applications. For example, BrainML has elements for describing experimental
electrophysiological data that could be extended to incorporate descriptions for model-generated data.
Other existing XML applications might be used for describing models of sub-cellular biochemical
reactions or other cellular processes (SBML or CellML). NeuroML will define logical connections
among these independent domains as needed.

In order to follow up on this idea, working groups were created for further development of NeuroML
core technology and for further development of specifications for cell morphology data, for models of
ion channels, for channel distributions, and for cell connectivity. These working groups will function
through e-mail lists administered through a SourceForge development website for NeuroML23. This
website will also facilitate version control, development of documentation, and code distribution.

23 SourceForge development website for NeuroML, http://sourceforge.net/projects/neuroml

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm228 24

ISSN: 1861-1680

References

Beeman D., and Bower J. M. (2004) Simulator-independent representation of ionic conductance
models with ChannelDB, Neurocomputing 58-60: 1085-1090.

Bower J. M. and Beeman D. (1998). The Book of GENESIS: Exploring Realistic Neural Models with
the GEneral NEural SImulation System, second edition. Springer-Verlag, New York.

Cannon, RC, FW Howell, NH Goddard, E De Shutter (2002) Non-curated distributed databases for
experimental data and models in neuroscience. Network: Computation in Neural Systems 13, 415-
428.

Collins M.O., Yu L., Coba M.P., Husi H., Campuzano I., Blackstock W.P., Choudhary J.S., and Grant
S.G. (2005). Proteomic analysis of in Vivo phosphorylated synaptic proteins. J Biol Chem 280:7.

Goddard N., Hucka M., Howell F., Cornelis H., Shankar K., and Beeman D. (2001) Towards NeuroML:
Model Description Methods for Collaborative Modelling in Neuroscience, Philosophical Transactions of
the Royal Society B. 356: 1209-1228.

Hines M. and Carnevale N. T. (1997). The NEURON Simulation Environment. Neural Computation 9:
1179-1209.

Hodgkin A. and Huxley A. (1952) A quantitative description of membrane current and its application to
conduction and excitation in nerve. J. Physiol. (London). 117: 500--544.

Howell F., Dyhrfjeld-Johnsen J., Maex R., De Schutter E., and Goddard N. (2000) A large scale model
of the cerebellar cortex using PGENESIS. Neurocomputing 32:1041-1046.

Poirazi P, Brannon T, Mel BW. (2003) Pyramidal neuron as two-layer neural network. Neuron 37: 989-
99.

Qi, W and SM Crook (2004) Tools for neuroinformatic data exchange: An XML application for neuronal
morphology data. Neurocomputing 58-60C, 1091-1095.

De Schutter E. and Bower J.M. (1994) An active membrane model of the cerebellar Purkinje cell. I.
Simulation of current clamps in slice. Journal of Neurophysiology 71: 375-400.

