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An Introduction to XML in Neuroscience - Sharon Crook 

What is the eXtensible Markup Language (XML)1? XML is a portable format for computer documents 
where data are surrounded by text descriptions called tags. Tags are ordinary text that is meant to 
provide a clear, concise and understandable context for data. Due to this self-describing 
representation, programs can parse documents easily. The tags define data objects called language 
elements, and the hierarchy of relationships among the language elements can be used to create an 
XML schema. 

                                                      

1 XML, http://www.w3.org/XML 
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What are some of the potential benefits of XML? Because each language element in an XML schema 
can be equivalent to an object class in a programming language such as Java or C++, XML facilitates 
the generation of code for reading and writing data documents. The use of XML also makes it easy to 
validate documents and create database tables for data element storage and access. All of these 
aspects of XML lead to its greatest benefit—its use facilitates communication and collaboration. 

Are there XML applications for neuroscience data or modeling? The following list provides examples 
of applications under development that can be used for representing neuroscience data and models. 
The first two are described in more detail in subsequent sections. 

NeuroML2 supports the use of declarative model specifications for neuroscience modeling efforts at 
different scales, from intracellular mechanisms to networks of reconstructed neurons. 

MorphML3 provides a common format for exchange of neuronal morphology data. It can also be used 
to specify cell structure for modeling efforts as part of NeuroML. 

BrainML4 is an application for representing time series data, spike trains, experimental protocols, and 
other data relevant to neurophysiology experiments.  

SBML5 (Systems Biology Markup Language) is an application for specifying models of biochemical 
reaction networks such as metabolic networks, cell-signaling pathways and gene regulatory networks.  

CellML6 is designed for the specification of biological models of cellular and sub-cellular processes 
such as calcium dynamics, metabolic pathways, signal transduction, and electrophysiology.  

MathML7 provides the means for describing the structure and content of mathematical notation in 
order to serve, receive, and process mathematics on the web. Other XML applications often use 
MathML language elements for representing mathematical equations. 

Many of these XML applications have associated tools for data analysis, data visualization, simulation, 
or data storage. Some also have tools for further development of the XML application itself. For 
example, the NeuroML Development Kit8, described in more detail in the next section of this article, 
can be used to parse and generate NeuroML to and from a Java object tree.  

An additional benefit of using XML is the availability of commercial and free development software. For 
example, there are many commercial products available for schema development, validation, and 
documentation such as Altova’s XMLSpy9. Software such as Sun’s Java Architecture for XML Binding 
(JAXB)10 can be used to bind an XML schema to schema-derived classes and will create an 
application program interface for reading and writing XML documents.  

                                                      

2 NeuroML, http://www.neuro.org/ 
3 MorphML, http://www.morphml.org/ 
4 BrainML, http://www.brainml.org/  
5 SBML, http://www.sbml.org/ 
6 CellML, http://www.cellml.org/ 
7 MathML, http://www.w3.org/Math 
8 NeuroML Develpoment Kit, http://www.neuroml.org/projects/ndk.html 
9 Altova’s XMLSpy, http://www.altova.com/ 
10 Sun’s Java Architecture for XML Binding (JAXB), http://java.sun.com/xml/jaxb 
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What are the potential liabilities of XML? It should be noted that most of the advantages of XML can 
be accomplished with good discourse, good design and good documentation. The major liability of 
XML is that files are extremely verbose compared to non-XML formats, so performance may suffer. In 
addition, the same features that make XML valuable for communication and collaboration can make it 
more difficult to protect private data. 

An Introduction to NeuroML - Fred Howell 

NeuroML is an ongoing effort to improve uptake of XML for software relating to neuroscience 
modeling. It is not a single standard XML language - rather a collection of related XML projects for 
modeling different aspects and levels of neural systems, from intracellular mechanisms and ion 
channels to networks of reconstructed neurons. This tutorial introduces the aims, techniques and 
future plans of the NeuroML project.  

Aim 

The aim of the NeuroML project is to move model specifications from programs to a declarative XML 
format.  

The challenges 

Building working models of the circuits of neural tissue is one of the best ways of furthering our 
understanding of how these complicated biological machines work. But models are often themselves 
complex programs, understandable only to the researcher who developed them. In order to give these 
models a longer shelf life and to make them more transparent, it is useful to express such models in a 
declarative fashion. XML is an ideal representation for the complex structure of models, as it is an 
open file format and is capable of representing arbitrarily complex structures. However, devising a 
standard language for models in neuroscience is challenging because of the variety of levels of scale 
and the various amounts of detail in models.  

The schematic of the interactions in a synapse (Collins et al 2005) shown in Figure 1 reveals some of 
the complex 3D interactions among intracellular pathways, receptors and the synaptic machinery. 
SBML provides a method for describing the basics of intracellular pathway modeling but provides no 
formalism for the spatial aspects of 3D interactions. It also does not include support for modeling the 
electrical properties of receptors, a critical aspect of most neural models.  

Models of single neurons often include detailed morphology data from reconstructed cells. Detailed 
models of dendrites also require data from electron microscopy (EM) level reconstructions. (Figure 2 
below shows an EM slice through rat hippocampus.) The MorphML XML standard was designed as an 
exchange format for morphology data, to complement the existing proprietary formats of 
reconstruction systems such as Neurolucida. In addition to morphology data, building a working model 
of a neuron requires access to physiology data including information about the types and distributions 
of ion channels throughout the cell membrane. It would help the modeling task substantially if more 
experimental data were available in open file formats. XML based formats for experimental metadata, 
as well as a cultural shift towards data publication will help this process. 
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Figure 1 - Interactions in a synapse (from Collins et al 2005). Figure reprint kindly permitted by the 
American Society for Biochemistry and Molecular Biology.  

 
Figure 2 - EM of slice from rat hippocampus (data from Synapse Web11, Medical College of Georgia) 

                                                      

11 Synapse Web, http://synapses.mcg.edu/ 
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Connectivity data is especially hard to obtain, but essential to building network models. Figure 3 
shows an example model of part of the cerebellar cortex circuitry (Howell et al. 2000). This model was 
built using a script program for the GENESIS12 simulator; the aim of NeuroML is to allow networks 
such as this to be specified declaratively in XML.  

  
            Figure 3 – Example from cerebellar cortex circuitry based on model in [2] 

Why XML? 

One important aspect of XML is that it provides a language-independent way to store structured 
information. It has achieved huge industry momentum because of its simplicity and flexibility as well as 
its relation to the HTML standard for web pages. It is used for representing data rather than as a 
programming language; because of this, using XML for model specification encourages declarative 
specifications rather than code. This facilitates automated transformation of model specifications to 
multiple other formats; programs have to be recoded by hand.  

Why not XML? 

There are a number of disadvantages to using XML as a representation.  

• It is more cumbersome to edit by hand than programming language sources because of its 
redundancy. Many prefer to use it as an output file format for software tools.  

• The format is verbose, and file sizes can be significantly larger than binary formats. Because of 
this, many tools compress the XML source.  

                                                      

12 GENESIS, http://www.genesis-sim.org/ 
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• It is slower to parse than ad hoc text formats. However, XML parsing libraries are available for 
every major programming language.  

• It is not suitable for binary data. Although one can embed binary data in an XML file using the 
BASE64 coding, this defeats the original objective of creating readable files.  

For the purposes of designing a common exchange format, however, the advantages of clarity and 
self-description outweigh the disadvantages.  

Components of a simulation model 

A typical simulation model in neuroscience is composed of scripts for setting up the model, parameter 
search routines, as well as custom code as shown in Figure 4. Often the simulation parameters are 
set within the code, and other researchers must read the code to find the details of the model. In order 
for other researchers to simulate the model, they must install the same version of the simulator, and 
compile any additional extensions. 

 

 
Figure 4 – Schematic of typical model 

 

Aiming towards declarative model specifications 

Ideally, the model specification and parameters would be separated from the simulation code and 
expressed in a declarative form rather than as a program as shown in Figure 5. This would make 
models easier to understand and also remove the dependence on a particular version of the simulator. 
It is possible for another simulator to run a declarative model, but a model expressed as a program 
has to be rewritten to run on another simulator.  
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       Figure 5 – Schematic of ideal model 

Publishing models 

Models are currently more like programs than publications; however, models expressed declaratively 
in XML are more likely to outlast the simulator they were written for. Robert Gentleman from Harvard 
has launched a campaign for reproducible research noting that many papers based on complex 
computer models do not include enough information to allow other researchers to reproduce the 
results; the real information about the model is embedded in the model code which is not often 
published. He notes that if published results are not easily reproducible by other researchers, the 
paper becomes more like an advertisement for the research than being the research itself. Moving 
model specification to XML makes the publication process simpler, but ideally the model specification 
should also include links to any experimental data used to derive parameters or validate results. The 
ModelDB13 database is a valuable repository of published models.  

Why is standardization for neural models hard? 

The problem of standardizing model descriptions for neuroscience models is difficult for several 
reasons. As demonstrated above, neural modeling is done at a variety of levels of scale, from protein 
interactions to large-scale networks of neurons. In addition, different simulators have different and 
changing capabilities that create a moving target for attempts to create any standards.  

Union or intersection? 

A central design question for XML formats for neural models is whether we should attempt to address 
the intersection of capabilities of a number of simulators and standardize one aspect of modeling; or 
alternatively, if we should address the union of capabilities and represent all aspects of all possible 
models.  

                                                      

13 ModelDB, http://senselab.neuron.yale.edu/ 
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The advantage of the intersection approach is that it is manageable; by restricting the scope to one 
modeling method, it becomes possible to converge on an agreed notation for one class of models. For 
example, the SBML standard provides a common notation for differential equation models of 
intracellular pathways, and the MorphML standard provides a specification for dendritic and axonal 
structures in neurons. The disadvantage of the intersection approach is that it only provides for a small 
part of the model with the rest of the model specification coded in a simulator specific way, perhaps 
using script programs.  

The essence of the union approach is for the XML model specification to be a complete description of 
the model - it can be used as the file format for a simulator. The advantage of this is that no additional 
files are needed to run the model; the XML is a complete description. The disadvantage is that 
attempting to define this "standard" would be a Sysiphan task. The only way it would work would be for 
each simulator developer to "just use XML" and to code representations in simulator-specific XML.  

The intersection approach is most attractive for making the resulting model descriptions useable by a 
number of tools with overlapping functions; however, it will only encompass a subset of model 
descriptions which will often require supplemental code or extensions to the XML standard to actually 
run. Simulator developers are likely to migrate towards their own XML formats, making the union of 
XML formats inevitable. Thus the questions for future XML model descriptions in neuroscience are:  

• Which types of models are simple enough and stable enough for a fixed XML standard to be 
appropriate?  

• For all the other parts of a model for which no standard exists, should they be expressed in 
arbitrary XML or should they at least use a common method for serializing object models?  

What is "NeuroML"? 

The NeuroML project was started to address the issues of model specification using XML. The 
website includes documentation for a standard way to map object models to XML, with a sample 
implementation provided in a Java development kit. The emphasis is on making it easy to define any 
object model and to serialize it in XML. Thus NeuroML addresses the union problem of expressing any 
level of model, with the standard upgraded from "just use XML" to "use XML which represents a 
systematic coding of an object tree". The NeuroML Development Kit performs this systematic coding 
automatically so that only a single line of code is required to read or write an arbitrarily complex object 
tree.  

Within NeuroML, the focus on defining object models first, rather than on defining the particular 
sequence of XML elements and attributes (as expressed by an XML Schema), is important. This 
approach is similar to the approach taken by the SBML, MAGE-ML14, and Open Microscopy15 teams. 
The problem with starting by defining XML tags first is that the resulting format requires custom code 
to parse. It is harder to write code that copes with arbitrary XML than it is to write generic code that 
deals with arbitrary object models. Important applications of such generic code are user interfaces that 
can cope with arbitrary object models (e.g. Catacomb by R. Cannon16) and parsers. 

                                                      

14 MAGE-ML, http://www.mged.org/Workgroups/MAGE/mage.html 
15 Open Microscopy, http://www.openmicroscopy.org/ 
16 Catacomb, http://www.enorg.org/ 
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The problem of defining standards for particular types of models remains. The NeuroML Development 
Kit includes sample object models for channel, cell and network levels; it is likely that the most 
appealing subjects for standardization are the channel and single compartmental neuron 
specifications since the techniques used by many simulators to model at these levels are agreed and 
stable. However, different simulators implement network model descriptions differently. One of the 
problems with network descriptions is that they often depend on the detail at lower levels. For 
example, a simulator-independent method for specifying a connectivity rule based on receptor 
densities at the dendrite would require standards for all levels from networks down to channels.  

Other XML languages 

As mentioned in the introduction, other XML standards relevant to model specification in neuroscience 
include SBML for intracellular pathway models, and MathML for equations. BrainML is a candidate 
schema for representing experimental data. In addition, the Axiope17 project has developed an object 
model editor for experimental metadata.  

Practicalities 

Question: I'm creating a simulator and I'd like to use NeuroML- what do I do?  

• Separate out the declarative aspects of the model specification. 

• Serialize the model into XML, using the NeuroML development kit (in Java) or your own code. 

• If any other developers are creating similar models, see if you can agree on a common set of 
classes to describe the models. 

The NeuroML Development Kit 

The NeuroML home page includes the Java-based development kit for defining object models and for 
generating and reading XML. It uses a technique called data binding for automating the process of 
generating and parsing XML from objects in memory. This reduces the programmer burden of reading 
arbitrarily complex XML model descriptions to using a single line of code and makes defining object 
models as simple as defining classes. The resultant XML uses class and field names, but contains no 
Java-specifics (unlike the basic serialization routines provided with Java and other programming 
languages such as Python).  

• Your program can read in an XML document using:  

Object o = XMLIn("file.xml");  

• And write one using:  

Object o = new MyComplexStructure(); 
XMLOut(o,"file.xml"); 

                                                      

17 Axiope, http://www.axiope.com/ 
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Example network definition 

This example taken from the NeuroML Development Kit defines a "Network" as having a set of 
elements (which can be neurons or other networks), and a set of projections.  

package neuroml.model.network; 
import neuroml.core.*; 
public class Network extends Element { 
    /** A network has a set of elements - can be populations or  
        individual cells*/ 
    public Set elements = new Set("ElementRef"); 
    /** A network also defines a set of projections between  
        elements   */ 
    public Set projections = new Set("Projection"); 
} 

The example below defines a simple 3D grid for the structure of a population of cells - just x, y and z 
sizes.  

public class Grid3DStructure extends PopulationStructure {    
    public int xsize=1; 
    public int ysize=1; 
    public int zsize=1; 
} 

Schema format 

The development kit uses a restricted subset of Java as a schema definition language. This includes:  

• Simple types: int, double, string  

• Collections, references  

• Classes and inheritance  

The created schema is provided in alternative formats such as XML-Schema and UML diagrams using 
reflection. The choice of schema format is less important than the choice of starting with an object 
model and generating the XML in a systematic fashion. The NeuroML website includes details on the 
XML coding chosen by the development kit.  

The place of embedded scripts in model descriptions 

Scripts are extremely convenient for coding loops for running simulations and for setting up ad hoc 
connectivity patterns, but including code in a model description makes that description less portable. It 
is likely that cutting edge models will always include an element of scripting. Thus the aim should be to 
express as much as possible of a model description declaratively, but accept that some models will 
always be programs.  
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Future plans 

Currently, many simulators are adopting their own XML formats for serializing model descriptions. As 
outlined above, common standards are working well where the domain is stable and agreed, but 
questions remain concerning how much standardization is useful for other domains. It is likely that the 
next modeling domain where standards will be addressed will be in the development of ChannelML for 
specification of ion channel models and NeuronML for single cell modeling. More experience with 
formalisms for building network models will be needed before a NetworkML specification will be 
feasible.  

NeuroML for Model Specification in ChannelDB and GENESIS - David 
Beeman 

Introduction 

ChannelDB18 (Beeman an Bower 2004) is an implementation of a database of ionic conductance 
models (channels) to be used in biologically realistic neuronal simulations. When choosing a 
representation for such models, a problem arises: the procedure for constructing a single model 
can be described in many different ways.  

Although a model may be unambiguously specified by a set of equations and parameter values, it is 
the function of a simulation script to tell the simulator how to implement the model. Because of 
differences in simulator design, simulation scripts for GENESIS (Bower and Beeman 1998) and 
NEURON19 (Hines and Carnevale 1997) will look quite different from each other. Consequently, it is 
very difficult to convert a simulation written for one simulator to one for another.  

The solution to this problem will be obvious to the participants of this workshop: use XML to establish 
a standard format for a declarative representation, NOT a simulator-dependent procedural 
representation.  

An example 

As an example, consider the set of equations used to describe the Hodgkin-Huxley model of the 
potassium conductance found in the squid giant axon (Hodgkin and Huxley 1957).  

 

 

                                                      

18 channelDB, http://www.modelersworkspace.org/channeldb/ChannelDB.html 
19 NEURON, http://www.neuron.yale.edu/ 
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Here, the conductance GK of this channel is given in terms of a gating variable n that satisfies a first-
order differential equation involving two voltage-dependent rate variables. Three possible ways to 
specify the rate variables for this model would be to  

• Represent the equations in a form that can be parsed into statements that can be evaluated by a 
simulator or a by computer language such as Java or C++.  

• Store tabulated values of the rate variables.  

• Use a parameterized form (A + BV) /  (C + D exp((E + V)/F))  and store only the six 
parameter values.  

The ChannelDB solution 

The ChannelDB implementation allows all three of the representations above, and is based on the 
XML format used in the NeuroML model description language (Goddard et al. 2001). The main 
features are:  

• XML representation of a Java Hodgkin-Huxley object with attributes for maximal conductance, and 
a set of gates and their exponents.  

• Gate objects have an attribute indicating dependence on voltage or an ion concentration, and 
objects for the forward and backward rate variables. 

• The NeuroML development parser converts between XML channel representations and Java 
objects. 

• Simple Java string manipulation commands are used to produce a simulation script from 
information in the fields of the DBChannel object. 

• The prototype database and interface creates commented GENESIS scripts from stored XML 
channel descriptions. 

NeuroML representation of the K channel 

This procedure results in the following XML representation for the Hodgkin-Huxley model potassium 
conductance:  

<neuroml class="DBChannel" description="Hodgkin-Huxley squid K 
 channel" 
 author="Dave Beeman" 
 keywords="Hodgkin-Huxley potassium squid delayed rectifier" 
 uniqueID="10262778758662F22@dogstar.colorado.edu" 
 notes="An implemention of the GENESIS K_squid_hh channel"     
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 Erest="-0.07V"> 
   <channels> 
      <channel name="K_squid_hh" class="HHChannel"   
       permeantSpecie="K" Erev="0.09V" Gmax="360.0S/m^2"  
       ivlaw="ohmic"> 
         <gates> 
            <gate name="X" class="HHVGate" timeUnit="sec"           
            voltageUnit="V" 
            vmin="-0.1" vmax="0.05" 
            instantCalculation="false" useState="false" power="4"> 
              <forwardRate class="ParameterizedHHRate" A="-600.0" 
               B="-10000.0" C="-1.0" D="1.0" E="0.060" F="-0.01"/> 
              <backwardRate class="ParameterizedHHRate" A="125.0"    
               B="0.0 C="0.0" D="1.0" E="0.07" F="-0.08"/> 
           </gate> 
         </gates> 
         <log author="Dave Beeman" date="Jul 9, 2002 11:11:15 PM" 
               literatureReference="A.L. Hodgkin and A.F. Huxley, 
                J. Physiol. (Lond) 117, pp 500-544 (1952)"> 
         </log> 
      </channel> 
   </channels> 
</neuroml> 

Some classes defined for ChannelDB 

NeuroML provides a number of templates, or classes, that may be used for this description. In the 
example above, the K_squid_hh channel is derived from the HHChannel class, which has certain 
properties such as a reversal potential Erev, and a conductance density Gmax. It also possesses a 
voltage activated Hodgkin-Huxley gate, derived from the HHVGate class. The gate contains objects 
representing the forward and backward rate variables. In this case, the equations for the rate variables 
are represented with a parameterized form, derived from the ParameterizedHHRate class. Other 
objects and attributes specify descriptive information about the model that would be useful in a 
database search.  

Some of the NeuroML classes used with ChannelDB are:  

DBChannel: Wrapper class that is used to contain any channel model that is stored in ChannelDB, 
along with some descriptive information.  

HHChannel: Class used for all the Hodgkin-Huxley type channels in the database.  

HHVGate: Used as a member of the gates set of a HHChannel. It contains forward and backward rate 
objects that depend on voltage, as well as some additional fields to describe the gate.  

HHCGate: An ion concentration-dependent gate, analogous to the voltage-dependent HHVGate. It 
provides an additional field for a reference to the object that provides the source of the ion 
concentration.  
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HHRate: A superclass for the specialized forms for the rate variables.  

ParameterizedHHRate: A subclass of HHRate that expresses rate variables in a parameterized form 
typical of many Hodgkin-Huxley type rate equations where rate equation is (A + BV) / (C + D exp((E + 
V)/F)).  

EquationHHRate: A subclass of HHRate that expresses the rate variables as equations.  

TabulatedHHRate: A subclass of HHRate that allows a gate's forwardRate or backwardRate to be 
specified by a table at equally spaced voltage (or ion concentration) points.  

ConcenPool: Describes a single shell model for a ion concentration pool with a buildup of 
concentration proportional to an incoming current and a time constant for decay. The object providing 
the source of concentration to a HHCGate is typically formed from this class. The source of currents is 
provided by a set of objects of class CurrentSource.  

CurrentSource: Used by ionic concentration pools to provide information about the object that 
provides an ionic current.  

Unfinished business and open questions 

There is more yet to be done to establish a complete simulator-independent XML representation for 
ion channel models. It is hoped that this workshop will provide a start for a cooperative effort to 
address some of the following issues:  

• Extend NeuroML to provide representations for more detailed multi-shell models of calcium 
diffusion. 

• Implement a more sophisticated representation of literature references than the simple string that 
is currently used in the NeuroML software. (We have proposed a schema for the Modeler's 
Workspace based on BibTeX.)  

• Create software to convert ChannelDB descriptions to NEURON and other simulator formats. 

• Implement the HHCVGate, a two-dimensional gate depending on both voltage and concentration. 
(Note that the Traub Ca-dependent K channel model uses a form that can be expressed as a 
product of a HHVGate and a HHCGate.)  

• Implement Borg-Graham or Lytton-Sejnowski temperature-dependent channel models with the 
NeuroML ThermodynamicHHVGate.  

• Is there a better way for a concentration-dependent channel model to reference the models that 
provide the source of ionic currents and concentrations?  

• NeuroML allows any string to be used for the equation used in the EquationHHRate. How much 
standardization should there be for the equation format and for the names of the independent 
variables and parameters?  
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NeuroML and GENESIS 3 development plans 

The GENESIS simulator is undergoing a major redevelopment effort, and will use an XML 
representation for model specifications. Standards that will emerge from this workshop will play an 
important role in GENESIS version 3.  

Figure 6 shows the components of GENESIS 2 as seen by the GENESIS user. Although GENESIS 
and its scripting language produce modular object-oriented simulations that are easy to modify and 
extend, this is not the case with the source code for GENESIS 2. The core modules of GENESIS were 
written in the late 1980's in C, and the modules are much more tightly coupled than the diagram would 
suggest.  

 
        Figure 6 – Components of GENESIS 2 

Upinder Bhalla of the National Centre for Biological Sciences in Bangalore, India wrote the X Windows 
XODUS GUI interface for GENESIS and did much of the initial GENESIS development. He has been 
rewriting the GENESIS base code in C++ as the Messaging Object Oriented Simulation Environment 
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(MOOSE)20. This reimplementation in an object-oriented language makes it possible to "unbundle" the 
components of GENESIS as shown by the dashed lines, and to create other interfaces to the 
GENESIS core.  

MOOSE provides:  

• Improved Messaging between GENESIS objects  

• Faster, smaller, cleaner implementation  

• Portability to MS Windows and non-UNIX platforms  

• Improved equation solvers  

• Ability to use multiple script parsers and user interfaces  

 

GENESIS 3 will add:  

• A modern graphical user interface  

• XML representation of models  

• Backwards compatibility with GENESIS 2  

• Tutorials and educational applications  

Figure 7 shows how using the MOOSE core for GENESIS 3 will allow multiple external interfaces to 
GENESIS 3.  

There are two main priorities for GENESIS 3 development. The first is to re-implement the X Windows 
graphical user interface of GENESIS in Java. This will allow the use of more modern user-friendly 
interfaces and will allow GENESIS to be used on non-UNIX platform such as Windows. A Java GUI for 
GENESIS will also allow tutorial simulations to be run over the Internet from a GENESIS server. The 
second is to develop XML-based representations of channel, cell, and network models. Although the 
present GENESIS cell parameter file format will continue to be supported for backwards compatibility, 
we plan to use a standard simulator-independent XML model description to import models into 
GENESIS. This will make it possible for modelers to more easily exchange simulations and simulation 
components, regardless of the simulator used.  

 

                                                      

20 MOOSE – Messaging Object Oriented Simulation Environment, http://www.genesis-sim.org/GENESIS/newgrant/MOOSE-
plans.html 
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        Figure 7 - External interfaces to GENESIS 3 

 

MorphML: An XML Application for Neuronal Morphology Data - Sharon 
Crook 

Introduction 

Neuronal morphology data are important for the study of many areas of neuroscience including 
development, aging, and pathology and are crucial for the development of structurally accurate 
compartmental models (Cannon et al. 2002). The complexity of problems in neuroscience often 
requires that research across disciplines be combined. However, existing neuroanatomical data have 
been obtained using many different neuron tracing systems. Generally, these systems represent 
neuron arborizations using a collection of points, diameters and connections in three dimensions.  

MorphML was developed as a common data format for neuronal morphology data. It can be used 
separately from NeuroML as a stand-alone XML application, but it can also be used as a 
representation for neuron morphology for compartmental models described using NeuroML. In 
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particular, MorphML is intended to facilitate data archiving, data and model exchange, database 
creation, and data and model publication for morphology data (Qi and Crook 2004). 

 
Figure 8 – Example of a MorphML element  

An example 

The MorphML language elements describe objects used to represent neuron cell bodies, branching 
dendrites and axons, spines and varicosities, fiducials, etc. An example of XMLSpy generated 
documentation for the language element for a segment is shown in Figure 8. Segments are connected 
to represent branching structures, where each segment is a truncated cone or frustum. The geometry 
of a segment is determined by the cross-sections at the ends of the segment. Each cross-section is 
defined by the 3D location (x, y and z) of the center point as well as an associated diameter. Note that 
some applications require that the diameters at the opposite ends of a segment have the same value 
so that the segments are all cylinders. 
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Figure 9 – Schematic of branching structure  

An example of a branching structure is shown in Figure 9. The XML fragment below provides a 
representation for this branching structure in MorphML. 

<segments> 
 <!--   Segment: Dendrite, ID: 1--> 
 <segment id=”1” name=”Dendrite”> 
  <proximal x=”0” y=”0” z=”0” diameter=”4”/> 
  <distal x=”16” y=”0” z=”0” diameter=”4”/> 
 </segment> 
 <!--   Segment: BranchA, ID: 2--> 
 <segment id=”2” name=”BranchA” parent=”1”> 
  <proximal x=”16” y=”1” z=”0” diameter=”2”/> 
  <distal x=”32” y=”9” z=”0” d=”2”/> 
 </segment> 
 <!--   Segment: BranchB, ID: 3--> 
 <segment id=”3” name=”BranchB” parent=”1”> 
  <proximal x=”16 y=”-1” z=”0” diameter=”2”/> 
  <distal x=”32” y=”-9” z=”0” diameter=”2”/> 
 </segment> 
</segments> 

Applications of MorphML 

Currently, MorphML is being used as the format for data and model specification in a number of 
software applications. One example is the Virtual Ratbrain Project21 which includes a database for 
peer reviewed 3D cellular anatomical data of the rat brain as well as visualization and analysis tools. 
In this project, data is stored in MorphML format, and one of the available tools is a MorphML Viewer. 
NeuroConstruct22, which is introduced below, is another application using MorphML. In addition, both 
the NEURON simulation environment and GENESIS are including the MorphML format in future 
developments. 

 

                                                      

21 Virtual Ratbrain Project, http://www.ratbrain.org/ 
22 NeuroConstruct, http://www.neuroconstruct.org/ 
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The practical use of XML specifications- Padraig Gleeson 

Introduction 

XML has emerged over the past few years as the de-facto standard for information exchange on the 
Internet. Data are formatted so that a target application knows exactly where each piece of information 
can be found. In the field of neuroscience too, this way of exchanging information can be useful, as 
the number of published models illustrating different aspects of the functioning of the nervous system 
grows. Many papers contain detailed information on cell morphologies, connectivity, the mechanics of 
voltage-gated ion channels, and the distribution of channels on neuronal membranes. Currently this 
information can be published in tabular form in the paper itself, or in accompanying files in one of a 
number of different simulator formats. Model data from these papers, which might be reusable for 
other models, can be extracted from the files only if the syntax of the simulator scripting language is 
known and the scripts are well written. 

The NeuroML, MorphML, and ChannelML initiatives seek to codify this knowledge to make it easier to 
publish data in a form that will be readily usable by the neuroscience community in general. We 
describe here how a computational neuroscience application might use models published using these 
specifications.  

Linking NeuroML, MorphML, and ChannelML specifications 

Neuroscientists are interested in relating experimental findings at the cellular and sub-cellular levels to 
the overall behavior of neurons. Models that are developed using experimental anatomy and 
electrophysiology data are often published, and ideally this information should be easily accessible for 
a wide range of scientists to analyze and reuse for their own areas of study. Any application for the 
general neuroscience community should present the concepts dealing with cell morphology and cell 
processes in a form that is familiar for neuroscientists and should leave the computational details in 
the background as much as possible. An intuitive user interface for creating the cell models would also 
increase the appeal of such an application. 

Cell morphology 

Many computational neuroscience models containing detailed morphological reconstructions of cells 
like that shown in Figure 10 have been published in recent years. See for example (De Schutter and 
Bower 1994) (Poirazi et al. 2003). The cell morphology data are usually provided in the format 
associated with the simulation environment, and such biophysical parameters as channel densities are 
usually embedded in the file that specifies the morphology. This simulator-dependent format makes it 
quite difficult to incorporate a cell model developed in NEURON, for example, with a cell that has been 
developed for the GENESIS environment. Separation of the morphology from the channel distribution 
would allow for greater flexibility for different investigators to study cell function under different 
electrical conditions, for example with different channel densities or additional membrane 
conductances.  
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Figure 10 – Purkinje cell (from De Schutter and Bower 1994) 

Cell processes 

Electrophysiological processes such as voltage-gated ion channels and synaptic mechanisms on the 
membranes of neurons are responsible for cell firing behavior. These processes can be represented 
by systems of differential equations that are solved by the various simulation platforms. The 
implementation of these simulations can be quite complex, and the scripts are difficult to read for 
anyone not familiar with the syntax of the simulator scripting language. However, most neuroscientists 
are familiar with the main elements of the cell process models such as the Hodgkin-Huxley formalism 
for the differential equations, the maximum conductance for a channel, etc. 
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Figure 11 demonstrates how the XML representation for the important aspects of a model might be 
handled. Templates are created for important cellular processes common to many computational 
neuroscience models such as double or single exponential synaptic mechanisms or Hodgkin-Huxley 
type channel mechanisms. The essential parameters that take the model from a theoretical framework 
to an instance describing a specific experimentally investigated process are required to complete the 
template. Documentation should make the required fields underlying the model formalism 
unambiguous. Different sets of parameters lead to differing instances of similar cellular processes. 
The XML file containing the data, formatted according to the template, can then be published, and it is 
instantly accessible to any application familiar with the file format. A mapping of the model to a number 
of simulation environments can be associated with each model. This mapping should be well tested 
and should represent an implementation of the model in line with the best practices of the simulation 
environment. 

 

 
Figure 11 – Schematic of XML model representation 

 

Investigators need an application for gathering these published models together, linking cellular 
processes with cell morphology, mapping the cell models into one or more of the native simulation 
scripting languages, and running the simulations.  
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neuroConstruct: An application to facilitate handling of XML specifications 

The Silver Laboratory in the Department of Physiology at University College London is developing an 
application, neuroConstruct, that will facilitate the linking of the XML model templates as described 
above. neuroConstruct features a 3D interface for visualizing cell morphologies and imports 
morphology data in various existing formats, including MorphML. Channel mechanisms can be placed 
on cells to form biologically realistic neuronal models. Networks of these cell prototypes can then be 
constructed, and the final model can be mapped to various simulation formats such as GENESIS or 
NEURON for execution. Development of neuroConstruct is taking place in parallel with the 
development of XML standards and provides an example of how real applications can make use of the 
emerging standards. 

Current Issues and Future Development: A Workshop Summary - 
Sharon Crook 

After much discussion, one of the items of consensus was that it is worthwhile for the neural modeling 
community to create a common data format under the umbrella of NeuroML for many of the most 
widely used model formalisms. Because researchers focus on anatomical, physiological, or modeling 
characteristics at different levels of scale (e.g. sub-cellular, cellular, circuit and system levels), the 
easiest way to develop NeuroML will be to create several domain-specific description languages such 
as MorphML and ChannelML and then link them through NeuroML. This modular approach will also 
help potential users understand the underlying schema and will make it easier to take advantage of 
existing XML applications. For example, BrainML has elements for describing experimental 
electrophysiological data that could be extended to incorporate descriptions for model-generated data. 
Other existing XML applications might be used for describing models of sub-cellular biochemical 
reactions or other cellular processes (SBML or CellML). NeuroML will define logical connections 
among these independent domains as needed.  

In order to follow up on this idea, working groups were created for further development of NeuroML 
core technology and for further development of specifications for cell morphology data, for models of 
ion channels, for channel distributions, and for cell connectivity. These working groups will function 
through e-mail lists administered through a SourceForge development website for NeuroML23. This 
website will also facilitate version control, development of documentation, and code distribution. 

                                                      

23 SourceForge development website for NeuroML,  http://sourceforge.net/projects/neuroml 
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