

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm227 1

ISSN: 1861-1680

Using P-GENESIS for Parallel Simulation of GENESIS
Models

A Brief Overview

Greg Hood

Pittsburgh Supercomputing Center, Carnegie Mellon University, United States, ghood@psc.edu

 urn:nbn:de:0009-3-2271

Abstract. P-GENESIS is an extension to the GENESIS neural simulator that allows users to take advantage of
parallel machines to speed up the simulation of their network models or concurrently simulate multiple models.
P-GENESIS adds several commands to the GENESIS script language that let a script running on one processor
execute remote procedure calls on other processors, and that let a script synchronize its execution with the
scripts running on other processors. We present here some brief comments on the mechanisms underlying
parallel script execution. We also offer advice on parallelizing parameter searches, partitioning network models,
and selecting suitable parallel hardware on which to run P-GENESIS.

Keywords: GENESIS, P-GENESIS, parallel simulation, parameter searching

Citation: Hood G (2005). Using P-GENESIS for Parallel Simulation of GENESIS Models – a Brief Overview.
Brains, Minds and Media, Vol. 1, bmm227 (urn:nbn:de:0009-3-2271)

Licence: Any party may pass on this Work by electronic means and make it available for download under the
terms and conditions of the Digital Peer Publishing Licence. The text of the licence may be accessed and
retrieved via Internet at http://www.dipp.nrw.de/lizenzen/dppl/dppl/DPPL_v2_en_06-2004.html.

Supplementary Material

Article Resources

GENESIS Resources

Datasheet

Using P-GENESIS for Parallel Simulation of GENESIS Models © 2005 Greg Hood

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm227 2

Who Can Benefit from P-GENESIS?

As one scales up a neural model to become more realistic, it is not unusual to run into practical limits
on the size of that model due to the simulation time required to adequately evaluate it. However, the
processors on commodity desktop computers are nearly as fast (in terms of clock speed) as any
general-purpose processor currently available in the marketplace, so the only way to substantially
increase performance is to apply parallel simulation techniques. P-GENESIS allows one to take
advantage of parallelism when performing GENESIS (Bower & Beeman 1998) simulations. There are
two main areas in which P-GENESIS is useful: simulating large network models (Goddard & Hood
1998, Goddard & Hood 1997, Howell et al. 2000, Vanier 2005a) and parameter searching (Vanier and
Bower 1999, Vanier 2005b). In contrast, large single-cell models are currently best handled by using
optimizations such as the GENESIS hsolve object, and these are not appropriate for partitioning with
P-GENESIS.

Once one decides to go the parallel route, there are several options for hardware on which to run the
simulations. At the low end is to simply use a local network to couple available desktop machines
together into a single computing system. Such an arrangement is usually adequate for doing parallel
parameter searches, but the limited TCP/IP network bandwidth and high communication latencies
often limit the degree of useful parallelism when doing large network simulations. For these situations,
one may obtain a higher degree of parallelism through the use of computational clusters which are
more tightly coupled through the use of special interconnect hardware. These can be found as
departmental or institutional computing resources at many universities and research institutions. One
may also have the option of applying for time at regional or national supercomputing facilities, and
thereby gain access to very large scale systems for the largest simulations.

Mechanisms

One uses P-GENESIS by modifying one's GENESIS simulation scripts so that portions of them may
execute in parallel. We will refer to each instance of a running P-GENESIS process as a "node".
Generally, for best efficiency the number of nodes will be the same as the number of physical
processors in a system, although, for testing, the two may be different. Each node in a P-GENESIS
configuration runs the same set of scripts, but the flow of control can vary from node to node so that
each may be performing different operations. For example, to obtain a master/worker form of parallel
execution, a script can test whether it is running on node 0, in which case it behaves as a master
node, or, if not, it behaves as a worker node.

P-GENESIS adds a number of new commands to the standard GENESIS script language. The
paron/paroff commands are required in any parallel script, and enable and gracefully disable parallel
script execution. Synchronization between scripts can be accomplished using barrier commands. A
simple "Hello, world" script (the hello.g example in the Supplementary Material) illustrates this, and
is useful in making sure P-GENESIS was configured and installed correctly before trying more
complex scripts.

One of the most important concepts in P-GENESIS is the notion of a remote procedure call. A script
running on one node can remotely execute a GENESIS command on another node by appending an
"@" symbol followed by a specification of the node(s) on which to run the command. For example, a

Using P-GENESIS for Parallel Simulation of GENESIS Models © 2005 Greg Hood

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm227 3

"create@2 compartment /cell/soma" command causes the command "create compartment

/cell/soma" to be executed on node 2. Note that each node has a distinct namespace so that if an
element is created with a certain name on one node, that element is not directly accessible by that
name on other nodes.

The basic command for linking elements (e.g., creating a synapse) on different nodes is called
raddmsg. It is analogous to addmsg, with the enhancement that the destination element can be
specified to be on a different node by using the "@" syntax. So, for example, "raddmsg
/cellA/soma/spike /cellB/dend[5]/Ex_channel@2 SPIKE" connects the neuron of cellA
(which is located on the same node as where this command is executed) to an excitatory channel of
the fifth dendritic compartment on cellB (which is located on node 2). While P-GENESIS attempts to
reproduce the behavior of GENESIS very closely, an extra one-timestep delay is introduced on
messages requiring internode communication. This is a side effect of the way P-GENESIS implements
internode communication using "postmaster" objects. Normally, in networks with biologically-realistic
synaptic delays, this additional one timestep delay is insignificant, and does not make an appreciable
difference in the simulation results.

Parameter Searches

Parameter searches for neural models are especially amenable to parallelization. Genetic algorithms
(GA) and simulated annealing (SA) are two commonly used methods for performing parameter
searches (Vanier and Bower 1999, Vanier 2005b). Each can be parallelized to achieve significant
speedups in comparison with doing the search sequentially on a single processor (i.e., doing
simulation/evaluation of particular parameter sets one-by-one).

One way of parallelizing a genetic search is to use a population-based approach wherein a fixed
number of parameter sets are kept "alive", and new candidates (mutations from the existing
population) are evaluated in parallel. If a new candidate's evaluation is better than the worst of the
existing population, the new candidate replaces it.

Example param in the Supplementary Material illustrates the use of this method with a simple search
for parameters that optimize a mathematical formula. A more realistic example (from a neural
modeling perspective) of a parameter search is contained in example param2, where conductances
within a single cell model form a parameter set that is optimized with respect to making the model
reproduce an experimentally-obtained spiking pattern.

Simulated annealing (SA) algorithms may also be parallelized by trying multiple moves in parallel. We
refer the reader to the literature (Azencott 1992) for details on these methods. In general, they scale
less well than genetic algorithms because the search space is more focused and there is a greater
probability of visiting (or revisiting) points in the search space that would not be evaluated in a
sequential SA search.

One could, of course, conduct a parameter search by simply using serial GENESIS as a "black box",
and invoking it repeatedly via a shell script or other control program. The advantage that P-GENESIS
has is that one can run multiple simulations without repeatedly incurring the overhead of starting the
GENESIS executable and building the model for each evaluation of a point in the search space.

Using P-GENESIS for Parallel Simulation of GENESIS Models © 2005 Greg Hood

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm227 4

Network Models

The other area in which P-GENESIS is extremely useful is in the parallel simulation of large network
models, models that would be prohibitively time-consuming on a single processor. In order to run a
network in parallel, P-GENESIS requires the script writer to explicitly partition the model across the
available set of computational nodes. Modifying the scripts for parallel execution can be simple or
difficult, depending on various factors, and thus the decision on when it makes sense to parallelize a
model must take these into account. The following factors make a model a better candidate for
parallelization with P-GENESIS:

• populations of similar neurons that may be partitioned across nodes

• the use of computationally-intensive (i.e. multicompartment) models for at least some of the
neurons (in contrast, if all neurons are integrate-and-fire, then it is likely that the
communication costs will outweigh the benefits of running in parallel)

• simulation runs that take several hours or more on serial machines (it is harder to justify the
human time to modify the scripts for shorter run times)

• models that will be altered and rerun multiple times (again, it is harder to justify the cost of
modifying the scripts for a one-shot run)

• very large models that do not fit in the memory of a single computer (and thus must be
parallelized to run at all)

When parallelizing a network, one typically creates the network elements (i.e., neurons), then makes
all the interconnections (synapses) among these. Thus, a typical script sequence is the following:

paron
// set up network elements using create commands
barrier
// make connections between elements using raddmsg commands
barrier
// run simulation
barrier
paroff

Example orient1 illustrates a parallel decomposition of the orient_tut model found in the
Scripts/orient_tut directory within the GENESIS software distribution. This parallelization is
based on putting all elements of one type on one node, all elements of another type on another node,
etc. This example is included for its simplicity. However, it does not scale well, in that there is no way
to take advantage of more than 3 nodes in the machine configuration. It is also subject to load
imbalance problems, since it is quite likely that the population of V1 cells will take more computational
effort than the retinal cells.

One can partition this model up in a much more scalable way by dividing each population of neurons
across the set of available nodes. In general, one should try to distribute the workload involved in
simulating a network as evenly as possible across the nodes. It is important to not have a single node
that is overburdened and becomes a bottleneck, which would decrease the overall processor
utilization. A common way to accomplish such a division is to parameterize the scripts in terms of n,

Using P-GENESIS for Parallel Simulation of GENESIS Models © 2005 Greg Hood

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm227 5

where n is a user-specified node count, or is obtained at runtime from the environment with the
nnodes function. An example of such a scalable parallelization is given in orient2.

It is recommended that one first try their parallelization on a smaller-scale simulation model, rather
than on the ultimate model one aims to construct. The model can be scaled down in terms of time
interval to be simulated, number of elements in the network, number of nodes in the computing
system, or some combination thereof. This makes debugging more tractable, and allows one to check
correspondence between the results of the serial and parallel scripts. These results should agree fairly
closely, but they will not be exactly the same because of the extra timestep delay on internode
communication (as discussed above). Finally, obtaining preliminary performance measurements on
smaller-scale models allows one to obtain estimates of scaling behavior for the target computing
system, and these can then be used to predict the computational requirements (memory, run time) of
the full-size model as a function of the number of nodes employed. This enables one to choose a
suitable number of nodes for the simulation, a number that is large enough to fit the model into
memory and get a substantial speedup, while not so large that efficiency is sacrificed.

References

Azencott, R. (Ed.) (1992). Simulated Annealing: Parallelization Techniques, John Wiley & Sons, Inc.

Bower, J.M. and Beeman, D., (Eds.) (1998), The Book of GENESIS, 2nd ed., Springer-Verlag.

GENESIS Home Page (1994-2005). http://www.genesis-sim.org/GENESIS/.

Goddard, N.H. and Hood, G. (1997). Parallel Genesis for Large Scale Modeling, in Computational
Neuroscience: Trends in Research 1997, Plenum Publishing, NY, pp 911-917.

Goddard, N.H. and Hood, G. (1998) Large-Scale Simulation using Parallel GENESIS, in The Book of
GENESIS, 2nd ed., Bower, J.M. and Beeman, D. (Eds), Springer-Verlag.

Howell, F.W., Dyhrfjeld-Johnsen, J., Maex, R., Goddard, N.H., De Schutter (2000), E. A large-scale
model of the cerebellar cortex using PGENESIS. Neurocomputing 32-33, pp 1041-1046.

P-GENESIS Home Page (1997-2005). http://www.psc.edu/general/software/packages/pgenesis.

Vanier, MC and Bower, JM (1999). A Comparative Survey of Automated Parameter-Search Methods
for Compartmental Neural Models. J. Comput. Neurosci. 7: 149-171.

Vanier, MC (2005a). Constructing Large-scale Network Models, Advanced Tutorial held at Wam-
Bamm’05; http://www.wam-bamm.org/WB05/Tutorials/

Vanier, MC (2005b). Parameter Searching in Neural Models, Advanced Tutorial held at Wam-
Bamm’05; http://www.wam-bamm.org/WB05/Tutorials/

