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Abstract. In the laboratory of Dr. Dieter Jaeger at Emory University, we use computer simulations to study how the 
biophysical properties of neurons—including their three-dimensional structure, passive membrane resistance and 
capacitance, and active membrane conductances generated by ion channels—affect the way that the neurons 
transfer synaptic inputs into the action potential streams that represent their output. Because our ultimate goal is to 
understand how neurons process and relay information in a living animal, we try to make our computer simulations 
as realistic as possible. As such, the computer models reflect the detailed morphology and all of the ion channels 
known to exist in the particular neuron types being simulated, and the model neurons are tested with synaptic input 
patterns that are intended to approximate the inputs that real neurons receive in vivo. The purpose of this workshop 
tutorial was to explain what we mean by ‘in vivo-like’ synaptic input patterns, and how we introduce these input 
patterns into our computer simulations using the freely available GENESIS software package (http://www.genesis-
sim.org/GENESIS). The presentation was divided into four sections: first, an explanation of what we are talking 
about when we refer to in vivo-like synaptic input patterns; second, a discussion of why computer simulations of 
realistic input patterns are useful; third, an overview of how these simulations are carried out in GENESIS; and 
fourth, a brief introduction to some strategies for analyzing the results of the simulations.  
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Synaptic input in vivo 

Neurons in the mammalian central nervous system typically receive synaptic inputs from many other 
neurons. For example, each individual human cerebellar Purkinje neuron is estimated to receive more 
than 100,000 excitatory synaptic contacts from granule cells, and additional contacts from local circuit 
inhibitory interneurons and the powerfully excitatory climbing fiber (Ito 1984). Although Purkinje neurons 
are an extreme example of synaptic convergence, individual neurons that receive thousands of synaptic 
inputs are not unusual in the mammalian CNS. As pointed out by Pare and colleagues (1998), the 
average cortical pyramidal neuron receives about 10,000 synaptic inputs, and most of them are from other 
cortical neurons, which typically fire about 10 spikes per second in awake animals. Thus, the average 
cortical pyramidal neuron can be expected to receive roughly 100,000 synaptic events every second. 
Even for globus pallidus neurons, which have significantly less membrane surface area and receive most 
of their synaptic contacts from striatal medium sized spiny neurons (which have low average spike rates in 
vivo), the total number of synaptic events received per second is expected to number in the thousands.  

The potential significance of this ongoing synaptic activity for a neuron can be illustrated with a 
hypothetical example. Imagine a neuron that receives 5,000 excitatory and 500 inhibitory synaptic 
contacts, each active at an average rate of 10 impulses per second. If each excitatory input had a unitary 
peak conductance of 500 pS, each inhibitory input a peak conductance of 2 nS, and physiologically 
realistic time constants, the average total synaptic conductance applied to the neuron could surpass 300 
nS. If a conductance of this size were present in a single physical location (a ‘point conductance’), every 
10 millivolts of difference between the neuron’s membrane potential and the net reversal potential of the 
combined synaptic conductance would generate 3 nA of synaptic current—which is a lot of current. 
Although this example exaggerates the actual effect of in vivo synaptic conductances by ignoring their 
spatial distribution, it illustrates the point that for most types of neurons, the total membrane conductance 
level in vivo (1) is quite high, and (2) fluctuates independently of the membrane potential because it is 
dominated by synaptic rather than intrinsic (i.e. voltage or ion gated) conductance mechanisms. The 
existence of high levels of ongoing, fluctuating synaptic input to neurons in vivo has now been clearly 
demonstrated using intracellular electrophysiological recordings from laboratory animals. 

Why simulate in vivo-like synaptic activity? 

There are many good reasons to include realistic patterns of synaptic input in computer simulations of 
neurons and neural circuits, but two of the reasons are particularly relevant to our work. The first is that we 
want to better understand how the morphological and biophysical properties of neurons contribute to their 
computational capabilities, and to address this issue we perform many electrophysiological experiments 
using the acute brain slice preparation, where we can manipulate biophysical properties of neurons in a 
controlled way. For example, we may examine the input-output properties of a neuron under ‘normal’ 
conditions, and then apply an agent that blocks a specific ion channel and assess how the loss of that 
channel type affects the cell’s function. This is a standard experimental method, but it suffers from the 
problem that unlike neurons in vivo, most of which are under the influence of substantial, fluctuating net 
synaptic conductances at all times, neurons in acute brain slices and most other in vitro preparations 
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receive comparatively little synaptic input. Furthermore, what synaptic input does exist is often blocked 
during experiments in order to focus on the intrinsic biophysical properties of the neurons.  

As an example, consider some experiments I did as a graduate student working with Dr. Peter H. 
Reinhart. The experiments involved blocking small conductance calcium-activated potassium channels 
(SK channels) in cerebellar Purkinje neurons in acute slices of rat brain. To avoid potential presynaptic 
effects of the SK channel blocker, fast synaptic transmission was blocked during the experiments. We 
observed that when SK channels were blocked, Purkinje neuron firing behavior changed dramatically 
(Edgerton and Reinhart 2003), and we concluded that in Purkinje neurons, SK channels are critical 
determinants of both the rate and regularity of spiking (Fig. 1). Our conclusions were well supported for 
Purkinje neurons in vitro; however, whether or not a blocker of SK channels would have similar effects in 
vivo, where the conductance due to SK channels would be only a small fraction of the net synaptic 
conductance, is a question that remains to be answered.  

 
Figure 1: Small conductance K (Ca2+) channels (Sk channels) regulate the firing rate of Purkinje neurons in 
vitro – but is this also true in vivo? Figure adapted from (Edgerton and Reinhart 2003) 

Many similar experiments have been carried out in slice preparations or cultured neurons, and in most 
cases the extent to which the in vitro results would translate to the in vivo condition remains uncertain. 
However, dynamic clamp experiments investigating the role of SK channels in deep cerebellar nucleus 
neurons (Volker Gauck and Dieter Jaeger, unpublished data), and modeling studies on the influence of 
ion channels in the presence and absence of background synaptic input (Destexhe and Pare 1999), 
suggest that only some of the pharmacological effects observed in vitro will hold true in the presence of in 
vivo synaptic input, meaning that the in vitro data should be interpreted with some caution. 
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Part of the problem is that there is no simple way to generate large amounts of asynchronous, spatially 
distributed, ongoing synaptic input to a neuron in vitro without directly affecting the intrinsic properties of 
the neuron. For example, electrical stimulation of presynaptic axons could be used to drive synaptic 
inputs, but would typically result in synchronous activation of a restricted subset of inputs. Certain 
pharmacological manipulations, such as elevating the external potassium concentration or bath 
application of low concentrations of the potassium channel blocker 4-aminopyridine (4-AP) have been 
shown to induce high levels of spontaneous synaptic input in brain slice preparations (Avoli et al. 2002). 
But in most cases these manipulations will directly alter the neuron being studied, such that the ‘control’ 
condition no longer captures the normal electrophysiological properties of the cell.  

This brings up an important point about modeling: in a multicompartmental model of a neuron, all of the 
synaptic inputs and intrinsic conductances can be controlled explicitly, allowing any pattern of synaptic 
input to be tested. The influence of a particular ion channel can then be assessed in simulations of both in 
vitro and in vivo conditions. Although the model will never be more than an approximation of the real 
neuron, a model that replicates the in vitro data accurately can make strong predictions about the in vivo 
condition because the only change is the addition of background synaptic input, which can be simulated 
with a reasonably high degree of precision.   

The second reason why in vivo-like synaptic input patterns are particularly relevant to our work is that we 
want to understand what types of computations single neurons carry out. Since single neuron 
computations involve transforming complex, spatially distributed synaptic input trains into single output 
trains, it is obviously necessary to include such patterns of synaptic input in the models. Because every 
input can be controlled explicitly, modeling may offer the best way of beginning to address this difficult 
question.     

How background synaptic input can be simulated using GENESIS 

There are multiple ways to do just about anything in GENESIS, and synaptic input is no exception. But we 
find the method presented here to be convenient and effective. We use a combination of three standard 
GENESIS objects for our synapses, each of which is described in detail in the online GENESIS manual at 
the following link: http://www.genesis-sim.org/GENESIS/Hyperdoc/Manual.html 

Steps involved in setting up the simulations:   

1. Cell morphology: reconstruct a filled neuron, obtain a morphology file from a colleague or the 
web, or make a simplified morphology model. 

2. Passive parameters: Rm, Cm, Ri 

3. Active conductances: GENESIS tabchannel objects 

4. Synapse templates (AMPA, GABA, etc.):  gmax, τrise, τfall, Erev 
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5. Compartments: list of those receiving input 

6. For every independent synapse (in a loop): 

a. Copy the synaptic conductance from a template library to the compt 

b. Create a timetable object to determine when the synapse activates 

c. Create a spikegen object to communicate with the synapse 

First, the characteristics of the individual synaptic conductances—peak size, kinetic properties, and 
reversal potential—are defined using the synchan object. Example code showing the creation of a 
synchan element called AMPA is shown below. The synchan object also allows the user to set a 
frequency of activation, but we don’t use this mechanism, so the frequency field of all of our synchan 
elements is set to 0. We begin by making a single, template synchan element and placing it into a neutral 
element called library. Individual, independent synchan elements can then be copied from this template 
to different compartments of the model cell using the copy command, creating a population of synaptic 
inputs like a real neuron would receive. Since the different instances of the synchan are independent of 
one another, their properties can be set individually so that the population of synapses is heterogeneous. 
Synchan elements are conductances that must be taken into account by the simulation solver, so they 
are placed within compartments in the cell path just like tabchannels and other conductances. 

 

GENESIS script defining AMPA-type conductances 

//GENESIS script to define AMPA-type conductance 
function make_AMPA_syn 
 // make AMPA-type synapse 
 if (!({exists AMPA})) 
  create synchan AMPA 
 end 
 // assign specific synapse properties 
 setfield AMPA Ek {E_AMPA}  
 setfield AMPA tau1 {tauRise_AMPA}  
 setfield AMPA tau2 {tauFall_AMPA}    
 setfield AMPA gmax {G_AMPA}  
 setfield AMPA frequency 0  
end 
 
//GENESIS script to create library template objects 
//First, include my synapse and channel function files 
include Syns.g 
include Chans.g 
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//Check if library already exists 
if (!{exists /library}) 
         create neutral /library 
         disable /library 
end 
 
//Push library element, make conductance elements, pop library 
pushe /library 
 make_AMPA_syn 
 make_G_Na 
 make_G_K 
pope 

 

Second, the activation times of each synapse are determined using timetable objects. A separate 
timetable is needed for every synapse that is to be independent; if two synchan objects share the 
same timetable, they will be active in perfect synchrony. Each timetable is simply a list of times at 
which any connected synapses will be activated. The list of times can be a pseudorandom distribution with 
a specified mean and shape (exponential or gamma distribution), or it can be read from an ascii text file. 
Timetables are maintained in a separate location outside the cellpath, because they don’t need to be 
handled by the solver. We create a separate neutral element called ‘inputs’ to hold these objects.  

 
Figure 2: Element tree for a simulation of a 2-compartment model (with ‘soma’ and ‘dendrite’ compartments). 
Each colored box represents a GENESIS element. Yellow boxes represent the essentials of the model—its 
morphological and physiological features. Green boxes represent elements that control synaptic input timing. 
Pink boxes represent template objects that can be copied from the library and inserted into the model (at 
which point they would become yellow boxes).  
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Last, each timetable needs to be connected to the synapse(s) it will control, and to do this we use the 
spikegen object. A separate spikegen element is created for each timetable and placed in the same 
location. Whenever the simulation run time matches a time in the timetable’s list, the timetable sends 
a message to the spikegen and the spikegen activates the synchan. 

Pseudocode for all compartments receiving input: 

//Using the same random seed means you get the same timetables next 
time too. 
randseed 78923456  
//Loop: for each compartment that receives a synapse… 
    1. copy the AMPA synapse from the library to the compartment  
    2. addmsg: connect the synaptic conductance to the compartment    
       with  
       CHANNEL and VOLTAGE messages 
 
    //set up the timetable 
    1. create a unique timetable object for this compartment’s AMPA     
       synapse  
    2. set timetable fields with setfield:    
       method:  
       1 = exponential distribution of intervals 
  2 = gamma distribution of intervals 
  3 = regular intervals 
  4 = read times from ascii file 
 meth_desc1: mean interval (= 1/rate)  
 meth_desc2: refractory period (we use 0.005)  
 meth_desc3: order of gamma distribution (we use 3)  
    3. call /inputs/Excit/soma/timetable TABFILL 
 
//set up spikegen 
      create a unique spikegen object for this compartment’s synapse 
      set the spikegen fields with setfield 
 output_amp: 1  
 thresh 0.5 
      //the spikegen tells the synapse when to activate based on the  
        timetable 
        addmsg from timetable to spikegen: type = INPUT, message =  
            activation 
        addmsg from the spikegen to the compartment’s AMPA element,  
            type = SPIKE 
            
// Next loop iteration or END 
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Since separate timetables and spikegens are needed for each independent synapse, it is easiest to 
set these up in a for loop. Example code for such an operation can be found in the read_STN_syns file, 
listed below. 

Example code to create a while loop in GENESIS: 

/* 
Script to add STN synaps es (AMPA synapses from subthalamic nucleus) 
to GP model.  
The compartments that re ceive the inputs must be listed in an ascii 
text file. 
*/ 
str STNfilename = “stn_syns.asc” 
randseed 78923456  
str stncompartment 
//create input element t ree outside of the cell path 
if (!{exists /inputs}) 
      create neutral /inputs 
end 
create neutral /inputs/STN 
num_STN = 0 
// Open the file with th e list of compartment names 
// File MUST NOT have an y blank lines at the end, or function will 
fail. 
openfile {STNfilename} r 
stncompartment = {readfile {STNfilename}} 
//cycle through STN inpu t compartments 
while (! {eof {STNfilename}}) 
      num_STN = {num_STN} + 1 
      //Add AMPA synapse from library 
      copy /library/AMPA {cellpath}/{stncompartment}/AMPA 
      addmsg  {cellpath}/{stncompartment}/AMPA \  
             {cellpath}/{stncompartment} CHANNEL Gk Ek 
      addmsg  {cellpath}/{stncompartment} \ 
             {cellpath}/{stncompartment}/AMPA VOLTAGE Vm 
      //set up timetable 
      create neutral /inputs/STN/{stncompartment} 
      create timetable /inputs/STN/{stncompartment}/timetable 
      if ({STN_rate} > 0) 
             setfield /inputs/STN/{stncompartment}/timetable \ 
                   maxtime {rundur} act_val 1.0 method 2     \ 
                   meth_desc1 {1/{STN_rate}} meth_desc2      \ 
                   0.005 meth_desc3 3      
             call /inputs/STN/{stncompartment}/timetable TABFILL 
      end 
      //set up spikegen 
      create spikegen /inputs/STN/{stncompartment}/spikegen  
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         setfield /inputs/STN/{stncompartment}/spikegen \ 
             output_amp 1 thresh 0.5 
      //connect timetables to AMPA synapses 
      if ({STN_rate} > 0) 
             addmsg /inputs/STN/{stncompartme nt}/timetable    \ 
                 /inputs/STN/{s tncompartment}/spikegen INPUT  \   
                 activation 
             addmsg /inputs/STN/{stncompartme nt}/spikegen \ 
                 {cellpath}/{st ncompartment}/AMPA SPIKE   \  
                 end 
       
      // get next compartment name 
      stncompartment = {readfile {STNfilename}} 
end 
closefile {STNfilename} 

Analyzing the results  

General points 

1. Simulation movies are useful for multicompartmental model analysis. One of the principal difficulties in 
working with morphologically and biophysically realistic multicompartmental models is how to analyze the 
results of the simulations. For one thing, simply deciding which of the variables that are computed during 
the simulations you want to store and analyze is not always easy. If a model neuron has 500 
compartments, there are already 500 different membrane potential values to consider, not to mention all 
of the currents, conductances, and internal ion concentrations. When starting out with a complex 
multicompartmental model, one way to begin getting a handle on the model’s behavior is to save the 
membrane potential of every compartment in the model during a simulation, convert the membrane 
potential values to colors, and use the color coding to show how the membrane voltage moves around the 
model neuron’s morphology over the course of a short simulation. This sort of simulation movie (Fig. 3) 
can be immensely helpful when explaining the model neuron’s behavior to an audience, and can also 
demonstrate spatio-temporal characteristics of the model that are difficult or impossible to detect from the 
voltage of any single compartment—events such as dendritic initiation of action potentials, propagation of 
voltage signals through the dendritic tree, and failures of spikes to propagate past dendritic branch points, 
for example.  

2. Examine how the conclusions depend on uncertain model assumptions. One must always bear in mind 
that no matter how well a model matches the available data, it is virtually certain to be missing important 
features of the real biological system and to contain some features that are not found in the real system. 
For this reason, the extent to which the conclusions of a modeling study depend upon uncertain model 
parameter settings must be explored. One strategy is to vary the relevant parameters of the model over 
their biologically plausible ranges and observe how the model’s behavior changes as a function of each 
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parameter. A second strategy is to divide the possible solution space into distinct conceptual alternatives 
and make different versions of the model neuron for each alternative. As an example of the latter strategy, 
we have multicompartmental models of rat globus pallidus neurons and we are interested to see how 
dendritic action potential initiation influences how these neurons integrate synaptic inputs. We can 
therefore draw a conceptual distinction between model neurons that have dendritic action potentials and 
those that do not, and compare these two alternative model types in the way that they translate synaptic 
inputs into spiking output.  

 

 
Figure 3: Screenshot of a simulation movie (view movie). The movie shows a model globus pallidus neuron 
being driven to spike by synaptic inputs. There are 100 excitatory inputs (represented as spheres on the 
dendrites) and 1024 inhibitory inputs (not shown), each activated randomly. Excitatory synapses activate 
when their color changes from red to white. The membrane potential of each compartment is presented in 
pseudocolor, showing that action potentials initiate in distal dendritic compartments and propagate to all 
regions of the model neuron. Near the end of the movie (approximately 94 msec on the simulation timer), a 
spike initiates in a thin dendrite but fails to propagate past the first branch point it reaches, suggesting that 
branchpoint failures may be important components of dendritic integration in the model. 
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Analysis of in vivo-like synaptic input patterns 

With hundreds or thousands of independent synaptic inputs to a model neuron, analyzing synaptic 
integration becomes a difficult problem. We find that it is important to consider the results at two different 
levels. 

1. A commonly used way of describing a model neuron’s input-output function is the f-F curve: a plot of 
the model’s output spike rate as a function of the mean rate of excitatory input. Separate f-F curves are 
then generated for different levels of average inhibitory input. If increasing inhibition simply shifts the f-F 
curve to the right, the model neuron is considered a linear integrator of inhibition and excitation. By 
contrast, a reduction in the slope of the f-F curve represents a divisive (or gain scaling) effect of inhibition. 
Gain changing operations are believed to be particularly important for the function of the nervous system 
(Koch 1999; Salinas and Thier 2000). 

       
Figure 4: Quatifying synaptic efficacy using spike-triggered averages of synaptic conductances. At the top 
are shown normalized spike-triggered averages for the conductance of each of the 100 excitatory synapses 
in two versions of the globus pallidus neuron model: one with no dendritic sodium channels (left), and the 
other with uniform sodium conductance density across the soma and dendrites (right). The efficacy of each 
synapse was quantified as the peak amplitude of the synapse’s spike-triggered average. The efficacy values 
for the synapses with respect to their location in the model are shown in the morphology plots. While the 
model with no dendritic sodium conductance showed little relationship between location and efficacy, the 
model with spiking dendrites was driven almost exclusively by a few synapses located near one particularly 
excitable region of the dendritic tree. 
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2. In addition to looking at the overall input-output properties of a model neuron, we have found that a 
careful analysis of how individual synapses control spiking is important for interpreting our results. We 
quantified synaptic efficacy in two different ways: first, for each synapse we calculated the probability that 
there would be an action potential at the soma of the model neuron within a specified time window after 
the activation of the synapse:  

Efficacy = P (output spike | synaptic activation) / P (output spike) 

Second, we made spike-triggered averages of the conductances of all synapses, using somatic action 
potentials as the trigger spikes, and took the peak of the conductance average for the synapse (figure 4).  

Efficacy = peak of synapse’s spike-triggered average conductance 

 
Figure. 5: When all excitatory synapses had the same unitary conductance, the model with no dendritic 
sodium conductance (left) was driven most effectively by synapses that were electrotonically near to the 
soma, as expected from passive decay of synaptic potentials over space. By contrast, the model with high 
dendritic sodium conductance (middle) showed the opposite relationship: those synapses that were 
electrotonically most distant from the soma were the most effective at driving spiking. Weight-scaling of 
synaptic amplitudes inversely to their measured efficacies produced a version of this model that responded 
to synapses in a more location-independent manner (right). 

Both methods provide estimates of the likelihood that the model neuron will spike following a given 
synapse’s activation, but the first method allows more jitter in the latency of the spike than the second 
method. The results of the two methods were quantitatively different but qualitatively similar, and showed 
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that variations in the biophysical properties of the model neuron could dramatically alter synaptic efficacy 
in a location-dependent way (figure 5).  

 

 
Figure 6: the three different versions of the model described in figure 5 have different input-output 
characteristics. The top plots show model output frequency as a function of excitatory input frequency at 
several different levels of inhibition (different colors) for each model, while the lower plots show example 
traces of the somatic voltage and autocorrelations for each model. The model with no dendritic sodium 
conductance (left) showed a primarily offset-shifting effect of inhibition and had a regular firing pattern even 
in the presence of irregular synaptic input. The model with the dendritic hotspot (middle) showed a 
substantial gain-scaling effect of inhibition, and highly irregular spike timing in the autocorrelation. The model 
with spiking dendrites but balanced synaptic efficacy (right) had properties that fell in between the other two 
models. 

Furthermore, the way that the model integrated excitation and inhibition was more strongly influenced by 
the synaptic efficacies of the individual inputs than by the intrinsic biophysical properties of the neurons. 
When individual synapses were weighted to achieve approximately equal efficacies across the population 
in both the spiking dendrite model and the non-spiking dendrite model, the influence of spiking dendrites 
on synaptic integration became much less apparent (figure 6). If we had relied only on the overall f-F 
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curves of the models and not examined the contributions of each individual synapse, we would have failed 
to recognize this important point.      

Conclusions 

In summary, it is important to keep in mind that in the mammalian central nervous system, neurons 
typically receive large amounts of ongoing, fluctuating synaptic conductance input, and that this 
conductance can significantly alter the integrative properties of the neurons. As such, experiments done 
using in vitro preparations lacking synaptic input should be interpreted with some caution and 
supplemented with modeling where possible. Complex, in vivo-like patterns of synaptic input can easily be 
implemented in multicompartmental computer simulations with the GENESIS software package. The main 
points of this tutorial can be summarized as follows:   

• Many independent synapses are needed to approximate synaptic input patterns in vivo, and can 
easily be added to a multicompartmental model using the synchan, timetable and spikegen 
objects in GENESIS as described above. 

• This method is useful for making inferences about how in vitro results will apply to the in vivo 
system and for studying single neuron input-output functions. 

• With complex multicompartmental models, analyzing the simulation data becomes one of the 
more difficult problems faced by the experimenter. Matlab software (The MathWorks, Natick, 
Massachusetts, USA), provides a convenient platform for customizing and automating the 
analysis of the data. 
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