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Introduction 

This is an updated version of the multi-part GENESIS Modeling Tutorial for the 2005 WAM-BAMM 
(http://www.wam-bamm.org) meeting on realistic biological modeling in San Antonio, TX. It was 
offered as a "take-home" hands-on tutorial to be used for self-study, following the Introduction to 
Realistic Neural Modeling tutorial (Beeman 2005, this Volume). It is intended to be a "quick start" to 
creating simulations with GENESIS, and will give you enough information to let you quickly begin 
creating cells and networks with GENESIS. 
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One way to use the tutorial is to go through it at a leisurely pace, exploring all the links to detailed 
information and documentation as you create models and perform the exercises. Another way is to 
take the most direct path, creating models without always understanding the details of what you have 
done. If you opt for this path, be sure to return to pick up the details when your lack of understanding 
makes progress difficult. Take your pick! 

The tutorial makes frequent references and links to sections of the GENESIS Reference Manual1. This 
is primarily a summary of the syntax used by the GENESIS Script Language Interpreter, the 
commands which it recognizes, and of the GENESIS "objects" that are available for constructing 
simulations. It also refers to chapters in The Book of GENESIS, by James M. Bower and David 
Beeman (1998). The second edition of this book, familiarly called "The BoG", was originally published 
by Springer-Verlag. As the publisher does not plan to reprint the book, the copyright has been 
reclaimed by the authors, and we are now able to offer it as a free "Internet Edition"2, with links to it in 
this package of Tutorials. 

The BoG gives a detailed coverage of realistic neural modeling from the subcellular to the network 
level, and provides the detailed guide to the construction of GENESIS simulations that is missing from 
the Reference Manual. This tutorial is constructed to minimize your need for the BoG. Nevertheless, 
this short tutorial can't possibly go into all the detail of a 482 page book, so you may wish study it in 
some detail, if you later decide to do some serious work with GENESIS. There are links to chapters in 
the BoG throughout this tutorial, in order to provide more information on some of the topics that we will 
cover. 

GENESIS Scripting 

If you have read the Introduction to Realistic Neural Modeling (Beeman 2005, this volume), you will be 
familiar with the rich variety of graphical user interfaces (GUIs), that are possible with GENESIS. In 
fact, it is possible to create and run GENESIS simulations with little or no programming, by using 
Neurokit (for single cells) or Kinetikit (for biochemical reactions). But, sooner or later, you will want the 
flexibility of creating your own GENESIS scripts. 

The bad news is that to get the maximum benefit from GENESIS and from this tutorial, you will have to 
do some programming in the GENESIS scripting language. The good news is that the modular object-
oriented nature of GENESIS makes it easy to modify existing scripts. Once you have learned a few 
basics of GENESIS scripting and have some good example simulation scripts to get you started, you 
can create most of your simulations by simple "hacking" of existing scripts. That is the approach taken 
in this tutorial, and by most GENESIS modelers. 

Some preliminaries 

Before you start, you will need a little background. 

                                                      

1 The GENESIS Reference Manual http://www.genesis-sim.org/GENESIS/Hyperdoc/Manual.html; last visit August 01, 2005. 
2 James M. Bower and David Beeman 2003 - Free Internet Edition (pdf) of The Book of Genesis, 2nd Edition.  
http://www.genesis-sim.org/GENESIS/bog/bog.html; last visit: August 01, 2005 
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• You should have some basic knowledge of compartmental modeling, which is covered in detail 
in the BoG. You can get a brief overview in parts of the Lectures on Computational 
Neuroscience3. The book Methods in Neuronal Modeling (Koch and Segev 1998) is another 
good reference. The Introduction to Realistic Neural Modeling (Beeman 2005, this volume) will 
also be a good background for understanding what follows. 

• You should have GENESIS installed, and know how to start it up. You will need to know where 
GENESIS is installed. There will be a directory genesis that contains the executable program 
"genesis" and other directories, such as Scripts, which contains the example and tutorial 
simulation scripts that are distributed with GENESIS. So, when we refer to genesis/Scripts, you 
will need to know the full path, e.g. /usr/local/genesis/Scripts, in order to locate these files. You 
will also need to know where these tutorials are installed, as they may refer to the "GENESIS 
Tutorials directory", or to a file within this directory such as cells/simplecell/simplecell.g. 

• The "GENESIS Tutorials directory" is an optional package that would normally be installed as 
genesis/Tutorials. It contains this tutorial (in Tutorials/genprog), other GENESIS tutorials, the 
cells directory (in Tutorials/cells), and other directories used by the GENESIS tutorials. The 
procedure for obtaining, installing and running GENESIS and the Tutorials package is given in 
the README file in the supplementary material or in the original Tutorials directory, 
respectively. 

• You will need to know how to get around in a UNIX command-line environment, and how to use 
a text editor. Fortunately, you only need to know a little. You can learn most of what you need 
to know about UNIX in order to use GENESIS in this Introduction to UNIX or Linux and the 
graphical desktop.  

The two most common text editors for UNIX are 'vi' and 'emacs'. If you are not familiar with either 
editor, you may find it easier to learn emacs. For an even simpler text editor with built-in help, try 'pico' 
if it is installed. If you are using Linux with the GNOME or KDE desktop, try 'gedit' or 'kedit". 

Getting started with GENESIS programming 

The building blocks used to create simulations under GENESIS are referred to as "elements". 
Elements are created from templates called "objects". This terminology can be somewhat confusing, 
because a GENESIS object is similar to what object-oriented languages such as Java or C++ call a 
"class", and a GENESIS element corresponds to an "object" in these languages. In GENESIS, 
elements are created as instantiations of a particular object. 

Simulations are constructed from these modules that receive inputs, perform calculations on them, 
and then generate outputs. Model neurons are constructed from these basic components, such as 
compartments. and variable conductance ion channels. 

                                                      

3 Dave Beeman – Lectures on Computational Neuroscience, http:/www.genesis-sim.org/GENESIS/cnsweb/cnslecs.html; last 
visit: August 1, 2005. 
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The various elements in a GENESIS simulation are organized in a tree like the one shown below, and 
are referenced with a notation similar to that used in UNIX directory trees. Thus, 
"/net/cell[1]/dend[2]/GABA" might refer to an inhibitory synaptically activated conductance residing in 
the dendrite compartment 2 of cell 1 of a network. 

 

 
Figure 1: The various elements in a GENESIS simulation are organized in a tree and are referenced 
with a notation similar to that used in UNIX directory trees. 

These objects communicate by passing messages to each other, and each contain the knowledge of 
their own variables (fields) and the methods (actions) that they use to perform their duties during a 
simulation. For example, during a simulation step, the PROCESS action will be carried for each type 
of object in its own way. If it is a voltage activated channel, this means carrying out a step in the 
numerical solution of the Hodgkin-Huxley equations for the conductance. If it is a graph object, this 
would mean plotting a point with data from any messages that it receives from other objects. 

GENESIS Scripting Example 

tutorial1.g 

The use of the GENESIS scripting language can best be illustrated with a simple example like the 
script from genesis/Scripts/tutorials/tutorial1.g. 

//genesis script for a simple compartment simulation (Tutorial #1) 
// create a parent element 

create neutral /cell 

 

// create an instance of the compartment object 

create compartment /cell/soma 

 

// set some internal fields 

setfield /cell/soma Rm 10 Cm 2 Em 25 inject 5 
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// create and display a graph inside a form 

create xform /data 

create xgraph /data/voltage 

xshow /data 

// set up a message (PLOT Vm) to the graph 

addmsg /cell/soma /data/voltage PLOT Vm *volts *red 

addmsg /cell/soma /data/voltage PLOT inject *current *blue 

 

// make some buttons to execute simulation commands 

create xbutton /data/RESET -script reset 

create xbutton /data/RUN -script "step 100" 

create xbutton /data/QUIT -script quit 

 

check       // perform a consistency check for each element 

reset       // initialize each element before starting the simulation 

 

This would produce the display: 

 
Figure 2: Display for tutorial1.g. 
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Unless you have some previous experience with GENESIS (or are very impatient), you should quickly 
run through the updated web version of Matt Wilson's original “Basic tutorial on using GENESIS” (skip 
Basic Tutorial). This gives an introduction to the most common GENESIS commands for creating, 
interacting with, and debugging GENESIS simulations on the command line, and leads you through 
the steps of creating the tutorial1.g script. (This tutorial was later expanded to become Chapter 12 of 
the BoG) 

A Basic Tutorial on GENESIS - Constructing a Simple Compartment 

Originally written by Matt Wilson 

This document will guide you through a brief session under GENESIS in which you will use the basic 
features of the simulator to create and run a simple simulation. 

Some Notation 

In this guide you will be instructed, at various points, to enter GENESIS commands through the 
keyboard. This will be indicated by showing the text that you should enter in a monospaced 
"typewriter" font. For example: 

type this 

Getting Started 

To run the simulator, first make sure that you are at the UNIX shell command prompt. At the prompt 
type genesis. If your path is properly configured this should start up the simulator and display the 
opening credits. If you get a message such as genesis: Command not found, check your path (echo 
$PATH) to be sure that it contains the genesis directory (often /usr/genesis). 

Interpreter Basics 

After the simulator has completed its startup procedure you should see the GENESIS command 
prompt "genesis #0 >" indicating that you are now in the GENESIS interpreter (SLI). In the interpreter 
you can execute both UNIX shell and GENESIS commands. Try this by typing 

ls 

This should invoke the UNIX ls command displaying files in the current directory. Typing 

listcommands 

should produce a list of available GENESIS commands. Note that while there are a large number of 
available commands, you will typically use a much smaller subset of these. It is also possible to 
combine GENESIS and UNIX shell commands.  
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Typing 

listcommands | more 

will "pipe" the output of the GENESIS command listcommands through the UNIX command more, thus 
allowing you to page through the listing. 

listcommands | more 

will "pipe" the output to the printer and 

listcommands > myfile 

will redirect the output into a file called "myfile". 

Basic Objects 

The building blocks used to create simulations under GENESIS are referred to as elements. Elements 
are created from templates called "objects". The simulator comes with a number of basic objects. To 
list the available objects type 

listobjects 

To get more information on a particular objects type 

showobject name 

where "name" is replaced by any name from the object list. 

The compartment object is commonly used in GENESIS simulations to construct parts of neurons. As 
we will be using this object, try the command showobject compartment at this time. There are a few 
commonly used objects which are documented more thoroughly with the GENESIS help command. In 
order to obtain a detailed description of the equivalent circuit for the compartment object, type 

help compartment 

 (HINT: You may pipe these commands into more to prevent the output from scrolling off the top of the 
screen.) For example. 

help compartment | more 

Creating Elements 

To create an Element from an Object description you use the create command. Try typing the create 
command without arguments 

create 

This gives a usage statement which gives the proper syntax for using this command. Most commands 
will produce a usage statement if invoked without arguments, or if followed with the option -usage or -
help.  
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In the case of the create command the usage statement looks like 

usage: create object name -autoindex [object-specific-options] 

In this exercise we will create a simple passive compartment. In order to keep track of the many 
elements that go into a simulation, each element must be given a name. To create a compartment 
with the name soma type 

create compartment /soma 

Elements are maintained in a hierarchy much like that used to maintain files in the UNIX operating 
system. In this case, /soma is a pathname which indicates that the soma is to be placed at the root or 
top of the hierarchy. 

We will eventually build a fairly realistic neuron called /cell with a soma, dendrites, channels and an 
axon. It would be a good idea to organize these components into a hierarchy of elements such as 
/cell/soma, /cell/dend, /cell/dend/Ex_channel, and so on. If we do this, we need to create the 
appropriate type of element for /cell. GENESIS has a neutral object for this sort of use. An element of 
this type is an empty element that performs no actions and is used chiefly as a parent element for a 
hierarchy of child elements. 

To start the construction of our cell, give the commands 

create neutral /cell 

create compartment /cell/soma} 

As we no longer need our original element /soma, we may delete it with the command delete. 

delete /soma 

Examining Elements 

The commands for maintaining elements within their hierarchy are very much like those used to 
maintain files in the UNIX operating system. In that spirit, the commands for moving about within the 
GENESIS element hierarchy are similar to their UNIX counterparts. For example, to list the elements 
in the current level of the hierarchy use the le (list elements) command 

le 

You should see several items listed including the newly created cell. 

Each element contains data fields which contain the values of parameters and state variables used by 
the element. To show the contents of these data fields use the showfield command. 

showfield /cell * 

This will display the names and contents of the data fields of the "cell". The "*" indicates that you wish 
to display all the data fields associated with the element. To display the contents of a particular field, 
type 

showfield /cell/soma Rm 
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To display an extended listing of the element contents including a description of the object associated 
with the element, type 

showfield /cell/soma ** 

Moving About in the Hierarchy 

When working in GENESIS you are always located at a particular element within the hierarchy which 
is referred to as the "working element". This location is used as a default for many commands which 
require path specifications. For example, the le command used above normally takes a path 
argument. When the path argument is omitted the working element is used and thus all elements 
located under the working element are listed. To move about in the hierarchy use the ce (change 
element) command. To change the current working element to the newly create soma, type 

ce /cell/soma 

Now you can repeat the show command used above omitting the explicit reference to the /cell/soma 
pathname. 

showfield * 

This should display the contents of the /cell/soma data fields. You may find the current working 
element by using the pwe (print working element) command. Try giving the command: 

pwe 

Note the analogy between these commands and the UNIX commands ls, cd, and pwd. By analogy 
with UNIX, GENESIS uses the symbols "." to refer to the working element, and ".." to refer to the 
element above it in the hierarchy. Try using these with the le, ce, and showfield commands. Likewise, 
GENESIS has pushe and pope commands to correspond to the UNIX pushd and popd commands. 
These provide a convenient method of changing to a new working element and returning to the 
previous one. Try the sequence of commands 

pushe /cell 

pwe 

pope 

pwe 

Modifying Elements 

The contents of the element data fields can be changed using the setfield command. To set the 
transmembrane resistance of your cell type 

setfield /cell/soma Rm 10 

You can set multiple fields in a single command as in 

setfield /cell/soma Cm 2 Em 25 inject 5 
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Now if you do a showfield command on the element you should see the new values appearing in the 
data fields. 

setfield /cell/soma * 

State variables are automatically updated by the elements when they are "run" during a simulation. 
For instance the Vm field is a state variable which, while you can change it, will be updated by the 
element automatically, replacing your value. 

Running a Simulation 

Before running a simulation the elements must be placed in a known initial state. This is done using 
the reset command, which should be performed prior to all simulation runs. 

reset 

If you now show the value of the compartment voltage Vm you will see that it has been reset to the 
value given by the parameter Em. 

showfield /cell/soma * 

To run a simulation use the step command, which causes the simulator to advance a given number of 
simulation steps. 

step 10 

 

Displaying the Vm field now shows that the simulator actually did something and the value has 
changed from its initial value due to the current injection. 

showfield /cell/soma Vm 

Adding Graphics 

Some people find that graphics are more effective than endless columns of numbers in monitoring the 
course of a simulation. With that in mind we will attempt to add a graph to the simulation which will 
display the voltage trajectory of your cell. Graphics are implemented using graphical objects from the 
XODUS library which are manipulated using the same techniques described above. The "form" is the 
graphical object which is used as a container for all other graphical items. Thus, before making a 
graph we need to make a form to put it in which we will arbitrarily name /data. 

create xform /data 

You may have noticed that nothing much seemed to happen. By default, forms are hidden when first 
created. To reveal the newly created form use the command 

xshow /data 
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An empty box should appear somewhere on your screen. To create a graph in this form with the name 
voltage use the command 

create xgraph /data/voltage 

Note that the graph was created beneath the form in the element hierarchy. This is quite important, as 
the hierarchy is used to define the nesting of the displayed graphical elements. 

Linking Elements 

Now you have a cell and a graph but you need some way of passing information from one to the other. 

Inter-element communication within GENESIS is achieved through a system of links called messages. 
Messages allow one element to access the data fields of another element. For example to cause the 
graph to display the voltage of the cell you must first pass a message from the cell to the graph 
indicating that you would like a particular data field to be plotted. This is done using the command 

addmsg /cell /data/voltage PLOT Vm *volts *red 

The first two arguments give it the source and destination elements. The third argument tells it what 
type of message you are sending. In this case the message is a request to plot the contents of the 
fourth argument which is the name of the data field in the cell which you wish to be plotted. The last 
two arguments give the label and color to be used in plotting this field. You can now run the simulation 
and view the results in the graph. 

reset 

step 100 

Note that to plot another field in the same graph, just send another message 

addmsg /cell /data/voltage PLOT inject *current *blue 

reset 

step 100 

and you are displaying current and voltage. 

Adding Buttons to a Form 

The xbutton graphical element is often used to invoke a function when a mouse button is clicked. 
Give the command 

create xbutton /data/RESET -script reset 

This should cause a bar labeled RESET to appear within the "data" form below the "voltage" graph. 
When the mouse is moved so that the cursor is within the bar and the left mouse button is clicked, the 
function following the argument -script is invoked.  
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Now add another button to the form with the command 

create xbutton /data/RUN -script "step 100" 

In this case, the function to be executed has a parameter (the number of steps), so "step 100" must be 
enclosed in quotes so that the argument of -script will be treated as a single string. 

At this stage, you have a complete GENESIS simulation which may be run by clicking the left mouse 
button on the bar labeled RESET and then on the one labeled RUN. To terminate the simulation and 
leave GENESIS, type either quit or exit. If you like, you may implement one of these commands with a 
button also. 

At this time, you should use an editor to create a script containing the GENESIS commands which 
were used to construct this simulation. The script should begin with 

//genesis 

and the filename should have the extension ".g". For example, if the script were named tutorial1.g, you 
could create the objects and set up the messages with the GENESIS command 

tutorial1 

If you have exited GENESIS and are back at the unix prompt, you may run GENESIS and bring up the 
simulation with the single command 

genesis tutorial1 

Making realistic neural compartments 

The soma compartment that was simulated in the tutorial1.g script corresponds to the "generic neural 
compartment" diagram (Fig. 3) but without the variable ionic conductances Gk that we will add later. As 
it is a single isolated compartment, we didn't make use of the axial resistance Ra. The diagram reveals 
that the current Iinject flows through Rm to create a potential difference that is in series with Em. The 
simulation results show that initially, Vm will equal Em, and the steady state will be reached after a time 
given roughly by the time constant for charging the membrane capacitance, RmCm. With the values 
used, the time constant was 20. 

A lot of the simplicity of the script stems from the fact that the numbers used in the simulation worked 
well with the default values of the graph axis scales and the default integration step size used by 
GENESIS to integrate the equation for the compartment Vm. In order to make a realistic soma 
compartment that we can then link to dendrite compartments and populate with ion channels, we will 
need to pick appropriate values for the passive cell parameters Rm, Ra, Cm, and the membrane resting 
potential Em.  

So far, we haven't said much about the units used to express the quantities Rm, Ra, Cm, Vm, etc. that 
appear in the neural compartment diagram (Fig. 3) and the differential equation for Vm (Eq.1).  
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Figure 3: Circuit diagram for a generic compartment.   

                                                                                                                                            (1) 

Equation 1: Differential equation for Vm 

Physicists and engineers like to use SI (MKS) units of ohms, farads, volts, and meters for describing 
resistance, capacitance, voltage, and length. Neurophysiologists are more likely to prefer kilohms, 
microfarads, millivolts, and either centimeters or micrometers. One can use any consistent set of units 
with GENESIS, but it is most common to use SI units. 

The problem with using any of these units for resistance and capacitance is that Rm, Cm, and Ra will 
depend on the dimensions of the section of dendrite that is represented by the neural compartment. In 
order to specify parameters that are independent of the cell dimensions, specific units are used. For a 
cylindrical compartment, the membrane resistance is inversely proportional to the area of the cylinder, 
so we define a specific membrane resistance RM, which has units of ohms·m². The membrane 
capacitance is proportional to the area, so it is expressed in terms of a specific membrane capacitance 
CM, with units of farads/m². Compartments are connected to each other through their axial resistances 
Ra. The axial resistance of a cylindrical compartment is proportional to its length and inversely 
proportional to its cross-sectional area. Therefore, we define the specific axial resistance RA to have 
units of ohms/m.  

For a piece of dendrite or a compartment of length l and diameter d we then have  

    (2) 

Note the membrane time constant Rm·Cm is also equal to RM·CM, so that it is independent of the 
dimensions of the membrane.  

WARNING: Many treatments of the passive properties of neural tissue use the symbols Rm, Ra, and 
Cm for the specific resistances and capacitance, instead of this notation with RM, RA, and CM. Also, 
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many textbooks and journal papers define the resistance and capacitance in terms of that for a unit 
length of cable having a specified diameter, where Rm = rm/l, Cm = cml, Ra = ral.  

Although this notation is convenient and widely used, it obscures the fact that rm and ra depend on the 
dendrite diameter. In your reading, you should be aware of the units that are being used.  

You can read more about passive properties of dendrites in the Digression on Cable Theory from the 
Introduction to Computational Neuroscience lectures.  

Our goal is to build a cylindrical soma compartment that has the same physiological properties as 
those of the squid giant axon studied by Hodgkin and Huxley, and simulated in the GENESIS "squid" 
tutorial in genesis/Scripts/squid. So, we will use these values (in SI units) for the compartment 
parameters. However, we will make our soma smaller, with both the length and diameter equal to 30 
micrometers.  

We will also need to choose an appropriate time step for the numerical solution of the equation for Vm. 
With the values of RM and CM that we will use (RM = 0.33333 and CM = 0.01), the membrane time 
constant will be 0.003333 seconds. We would then expect our integration time step to be a small 
fraction of this. In practice, it turns out that 50 microseconds (0.00005 sec) will be a good value.  

You can (and should, at some point) read the section in the GENESIS Reference Manual on Clocks 
for further suggestions on choosing a time step. The documentation for the commands setclock and 
useclock gives the details of setting the time step.  

Tutorial2.g 

Chapter 13 of the BoG leads the reader through the process of developing the script tutorial2.g. If you 
like, you can run this script from the genesis/Scripts/tutorials directory. You should now examine 
tutorial2.g:  

 

//genesis  -  tutorial2.g - GENESIS Version 2.0 

/*=================================================================== 

  A sample script to create a soma-like compartment. SI units are 
used. 

  
===================================================================*/ 

 

float PI = 3.14159 

 

// soma parameters - chosen to be the same as in SQUID (but in SI    
// units) 

float RM = 0.33333  // specific membrane resistance (ohms m^2) 

float CM = 0.01  // specific membrane capacitance (farads/m^2) 
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float RA = 0.3  // specific axial resistance (ohms m) 

float EREST_ACT = -0.07 // resting membrane potential (volts) 

float Eleak = EREST_ACT + 0.0106  // membrane leakage potential 
(volts) 

float ENA   = 0.045      // sodium equilibrium potential 

float EK    = -0.082     // potassium equilibrium potential 

 

// cell dimensions (meters) 

float soma_l = 30e-6     // cylinder equivalent to 30 micron sphere 

float soma_d = 30e-6 

 

float dt = 0.00005  // simulation time step in sec 

setclock  0  {dt}  // set the simulation clock 

 

//=============================== 

//      Function Definitions 

//=============================== 

 

function makecompartment(path, length, dia, Erest) 

    str path 

    float length, dia, Erest 

    float area = length*PI*dia 

    float xarea = PI*dia*dia/4 

 

    create      compartment     {path} 

    setfield   {path}              \ 

                Em      { Erest }   \           // volts 

                Rm      { RM/area } \           // Ohms 

                Cm      { CM*area } \           // Farads 

                Ra      { RA*length/xarea }     // Ohms 

end 

 

function make_Vmgraph 

    float vmin = -0.100 

    float vmax = 0.05 

    float tmax = 0.100 // default simulation time = 100 msec 
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    create xform /data 

    create xgraph /data/voltage 

    setfield ^ xmax {tmax} ymin {vmin} ymax {vmax} 

    create xbutton /data/RESET  -script reset 

    create xbutton /data/RUN  -script "step "{tmax}" -time" 

    create xbutton /data/QUIT -script quit 

    xshow /data 

end 

 

//=============================== 

//         Main Script 

//=============================== 

 

create neutral /cell 

// create the soma compartment "/cell/soma" 

makecompartment /cell/soma {soma_l} {soma_d} {Eleak} 

 

// provide current injection to the soma 

setfield /cell/soma inject  0.3e-9      // 0.3 nA injection current 

 

// make the graph to display soma Vm and pass messages to the graph 

make_Vmgraph 

addmsg /cell/soma /data/voltage PLOT Vm *volts *red 

 

check 

reset 

 

There are several features of the GENESIS script language that are introduced here:  

• The use of a C-style multiline comment, extending from the second through fourth line.  

• Declaration of variables to be used. In this script only floating point variables (float) are used, 
but "int" and "str" are also allowed. The declaration and use of variables is explained in the 
GENESIS Reference Manual section on Variables.  

• The line "setclock 0 {dt}" sets the global simulation clock (clock 0) to the specified time step, 
dt. Note the use of curly brackets around the variable name dt. Usually, the value of a variable 
or an expression must be evaluated by enclosing it in curly brackets in order to distinguish 
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between the value represented by the character string (0.00005) and the actual string of 
characters "dt". This is particularly true when the expression is to be evaluated as an 
argument of a GENESIS command or script language function.  

• The use of function declarations for makecompartment and make_Vmgraph, and their use in 
the "Main Script" section. GENESIS script language functions are described in the GENESIS 
Reference Manual section on Functions.  

• The use of a backslash to continue a line in the long setfield command in the 
makecompartment function.  

• Setting the graph scales, and the use of "^" to denote the element last referenced (in this 
example, /data/voltage).  

• The use of the "-time" option for the step command with the RUN button, to give the amount of 
time to run the simulation, rather than the number of steps. (See the documentation for step.)  

Building a cell the easy way 

Now that we know how to make a realistic neural compartment, the next steps in creating a realistic 
model of a neuron are to: 

1. Set the passive membrane parameters (membrane resistance and capacitance, axial 
resistance, and membrane resting potential (Rm, Cm, Ra, and Ek) for each of the compartments. 

2. Populate the compartments with ionic conductances ("channels"), or other related neural 
elements. 

3. Link compartments for the soma and dendrites together with appropriate messages to make a 
cell.  

The Book of GENESIS gradually builds up to the creation of a cell the "hard way" in Chapter 14 and 
Chapter 15, describing the element fields that need to be set and the messages that need to be 
established between the elements. It then describes an easier way in Chapter 16 that uses the 
GENESIS cell reader to perform these three steps. 

There is some value to learning the details of the "hard way" in order to understand what the cell 
reader is doing, and the messages that it sets up between the elements that make up a cell model. 
So, here is a link to a short summary of this material: 

Detour: Building a cell without the cell reader. 

At some point, it would be useful to follow this link to see how these steps would be done using 
separate GENESIS commands. But, for now, let's plunge ahead and create a simple neuron with the 
cell reader. 
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In this part of the tutorial we will use the cell reader to create a simple two-compartment neuron with a 
dendrite compartment, a soma, and an axon. The dendrite contains synaptically activated excitatory 
and inhibitory channels and the soma contains voltage-activated Hodgkin-Huxley sodium and 
potassium channels, plus a spikegen element that acts like the initial part of an axon. This may be 
used to provide synaptic input to another cell. 

Locate the "GENESIS Tutorials directory" that contains the GENESIS tutorials and "cd" to it in a 
terminal window. "ls" will show you that it contains a cells directory, which contains other directories 
having various GENESIS cell models. To begin, "cd" to the directory cells/simplecell and run the 
simplecell simulation by typing "genesis simplecell". You may vary the injection current (given in 
Amperes) from the default value of 0.5 nA, by editing the value in the "Injection" dialog box. NOTE: 
after entering a value in a GENESIS dialog box, you must hit the "Enter" key for the value to be 
accepted. Experiment with the simulation, and the effect of the RESET and "Overlay" toggle button 
after changing the injection current. Notice the "scale" button on the graph lets you change the scales 
for graph axes. 

SimpleCell.g 

Now, it's time to understand the simplecell.g script, which contains only: 

//genesis  -  simplecell.g 

/*==================================================================== 

  A sample script to create a neuron containing channels taken from 

  hh_tchan.g in the neurokit prototypes library.  SI units are used. 

  
====================================================================*/ 

 

// Create a library of prototype elements to be used by the cell     
// reader 

include protodefs 

 

float tmax = 0.5                // simulation time in sec 

float dt = 0.00005              // simulation time step in sec 

setclock  0  {dt}               // set the simulation clock 

 

// include the graphics functions 

include graphics 

 

 

//=============================== 

//         Main Script 
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//=============================== 

 

readcell cell.p /cell 

 

// make the control panel 

make_control 

 

// make the graph to display soma Vm and pass messages to the graph 

make_Vmgraph 

addmsg /cell/soma /data/voltage PLOT Vm *volts *red 

 

setfield /control/Injection value 0.5e-9 

set_inject /control/Injection  // set initial injection from Injection  

                                  dialog 

 

check 

reset 

 

The statement "include protodefs" merges in the contents of the protodefs.g file, which is in the current 
(cells/simplecell) directory. This file, which we will examine shortly, creates the prototype compartment 
and channels, from which the cell reader will construct our cell. 

The included file, graphics.g, contains the definition of the functions make_control and make_Vmgraph 
that are used to make the control panel and the graph for plotting the soma membrane potential Vm. 

cell.p 

The cell is constructed with the single command 

readcell cell.p /cell 

which creates a neutral placeholder element /cell and builds the cell under it, according to the 
specifications in the cell parameter file cell.p: 
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// cell.p - Cell parameter file used in the simplecell tutorial 

// Format of file : 

// x,y,z,dia are in microns, all other units are SI (Meter Kilogram  
// Sec Amp) 

// In polar mode 'r' is in microns, theta and phi in degrees  

// readcell options start with a '*' 

// The format for each compartment parameter line is : 

// name  parent r theta phi  d  ch dens ... 

// in polar mode, and in cartesian mode : 

// name  parent x  y  z  d  ch  dens ... 

// For channels, "dens" =  maximum conductance per unit area of      
// compartment 

// For spike elements, "dens" is the spike threshold 

//  Coordinate mode 

*relative 

*cartesian 

*asymmetric 

 

// Specifying constants 

*set_compt_param RM 0.33333 

*set_compt_param RA 0.3 

*set_compt_param CM 0.01 

*set_compt_param     EREST_ACT -0.07 

 

// For the soma, use the leakage potential (-0.07 + 0.0106) for      
// Em *set_compt_param     ELEAK -0.0594 

soma  none   30  0  0  30  Na_hh_tchan 1200   K_hh_tchan 360 spike 0.0 

// The dendrite has no H-H channels, so ELEAK = EREST_ACT            
// *set_compt_param     ELEAK -0.07 

dend soma  100  0  0   2   Ex_channel 0.795775 Inh_channel 0.397888 

 

The comments in the file give a brief description of the format of a cell parameter file, and further 
details are given in the documentation for readcell. The readcell options used here specify that 
relative cartesian coordinates will be used with asymmetric compartments. (If the option "*symmetric" 
had been used, then the cell would be constructed using symcompartment elements). 
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This means that for lines such as 

soma  none   30  0  0  30 

dend  soma  100  0  0   2 

the soma, which is the start of the cell and has no parent, has its end at the (x, y, z) coordinates of (30, 
0, 0) in micrometers. As the cell starts at (0, 0, 0), this means that the soma has a length of 30 
micrometers and a diameter of 30 micrometers. The "dend" section will be connected to its parent, the 
soma, through its own axial resistance Ra, with suitable messages established between the two 
compartments. As relative coordinates are being used, the end of the dendrite compartment will lie 
100 micrometers along the x-axis from the end of of the soma compartment. 

With the simplecell simulation running, give these commands to the genesis prompt: 

showfield /cell/soma -all 

showfield /cell/dend -all 

The "-all" option causes the compartment start (x0, y0, z0) and end (x, y, z) coordinates to be 
displayed, along with the length and diameter and other compartment fields. Verify that these values 
are what you would expect. 

For a more interesting example of 9-compartment cell with branching basal dendrites, see the cell 
parameter file cells/corticalcells/layer5.p. 

In the tutorial2.g script, the specific membrane parameters RM, CM, and RA were declared and given 
values. The makecompartment function was used to calculate and set the proper values of the fields 
Rm, Cm, and Ra using these parameters and the compartment length and diameter. Here, this is all 
done by the cell reader, using the values of RM, RA, and CM that were specified using the 
"*set_compt_param" option and the compartment coordinates and diameter. You can verify that this 
was correctly done, by using the showfield commands above. 

tutorial2.g also defined the resting potential of the compartment EREST_ACT, but set the soma 
compartment Em field to a different value, "Eleak = EREST_ACT + 0.0106". Normally, we would 
expect to set this field, which represents the "battery" in series with the membrane resistance Rm, to 
the value of EREST_ACT. However, Hodgin and Huxley found it necessary to set Em to a leakage 
potential Eleak that compensates for current flow through other channels (such as chloride channels) 
which were not explicitly taken into account in their model. Eleak is set to a value that results in no net 
current flow when the cell is at EREST_ACT. The cell reader takes care of this by not only setting 
EREST_ACT to the value specified in the cell parameter file, but allowing the use of another 
parameter ELEAK, which if specified, gives an alternate value Em, but allows Vm to be initialized to 
EREST_ACT on reset, instead of Em. (For further details of the initializaton of Vm on reset, see the 
documentation for compartment.) 

Therefore, the cell parameter file above sets ELEAK to EREST_ACT + 0.0106 for the soma, but sets it 
to EREST_ACT for the dendrite. 

Finally, note the list of channels and their conductance densities that follow the compartment 
coordinates and diameter. For the soma, these are the values used by Hodgkin and Huxley for the 
squid giant axon, with the sodium channel (Na_hh_tchan) given a maximum conductance of 1200 
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Siemens per square meter of surface area, and the potassium channel (K_hh_tchan) given a value of 
300 S/m2. The cell reader scales these by the surface area to set the "Gbar" fields of the channel 
elements, and also sets up the necessary messages between the channels and the compartment that 
contains them. 

Although the simplecell simulation does not make use of them, the dendrite compartment has been 
given excitatory and inhibitory synaptically activated channels, with appropriate conductance densities. 
A later section of the tutorial describes how these, and the spike generator element spike that was 
created in the soma, can be used when this cell is connected to another in a circuit or network. (If you 
want a preview, take a look at the documentation for synchan, spikegen, and the GENESIS Reference 
Manual section on Synaptic Connections). 

To see the messages that have been set up by the cell reader (plus the PLOT message established 
by simplecell.g), give the commands 

showmsg /cell/soma 

showmsg /cell/dend 

Creating channel prototypes 

The remaining thing to be explained is the way that we tell the cell reader about the properties of the 
elements that the cell parameter file calls Na_hh_tchan, K_hh_tchan, spike, Ex_channel, and 
Inh_channel. If you are anxious to go on to connect cells together in a network, you can skip ahead to 
the section on Making synaptic connections and return to this part later. However, at some point, you 
will need to create these prototype channels. 

The cell reader builds the cell by making copies of "prototypes" of the various elements that will be 
used, replacing the default values of parameter fields with values taken from the cell descriptor file. 
For example, when constructing a soma with several attached dendrite compartments, it will make 
multiple copies of a generic compartment prototype and then set the data fields in each compartment 
to the appropriate values. Likewise, a cell having Hodgkin-Huxley Na channels in several 
compartments will get these channels from copies of the single Na channel prototype, setting the 
value of the maximum channel conductance Gbar for each copy, making use of the specified 
conductance density and dimensions of the compartment that contains the channel. 

The cell reader expects to find this library of prototype elements as a set of subelements of the neutral 
element /library. Thus, we need to write a script that will create /library and fill it with a prototype 
compartment, one copy of each of the different channel types we will use, and a spike generator. 
Although the statements that are needed to set up the prototype library could go into your main 
simulation script, it is customary to make a separate script for this, and to then use include to bring it 
into the simulation. This script is often called protodefs.g, although you may give it any name that you 
like in your own simulations. 
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protodefs.g 

At this point, examine the listing for protodefs.g.  

// protodefs.g - Definition of prototype elements for "simplecell" 

 

/* Included files are in genesis/Scripts/neurokit/prototypes */ 

 

/* file for standard compartments */ 

include compartments 

 

// include the definitions for the functions to create H-H tabchannels 

include hh_tchan 

 

/* hh_tchan.g assigns values to the global variables EREST_ACT, ENA, 
EK, and SOMA_A.  The first three will be superseded by values defined 
below. The value of SOMA_A set in hh_tchan.g is not relevant, as the 
cell reader calculates the compartment area.  

*/ 

EREST_ACT = -0.07 // resting membrane potential (volts) 

ENA  = 0.045       // sodium equilibrium potential 

EK   = -0.082      // potassium equilibrium potential 

 

/* file for synaptic channels */ 

include synchans 

 

/* file which makes a spike generator */ 

include protospike 

 

// Make a "library element" to hold the prototypes, which will be used 
// by the cell reader to add compartments and channels to the cell. 

create neutral /library 

 

// We don't want the library to try to calculate anything, so we      
// disable it 

disable /library 

 

// To ensure that all subsequent elements are made in the library 
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pushe /library 

 

/* Make a prototype compartment.  The internal fields will be set by 

   the cell reader, so they do not need to be set here.  The 

   make_cylind_compartment function is defined in compartments.g. 

*/ 

make_cylind_compartment 

 

/* Functions in hh_tchan.g create prototype H-H tabchannels 

   "Na_hh_tchan" and "K_hh_tchan" 

*/ 

make_Na_hh_tchan 

make_K_hh_tchan 

 

// Make a prototype excitatory channel, "Ex_channel" - from synchans.g 

make_Ex_channel  /* synchan with Ek = 0.045, tau1 = tau2 = 3 msec */ 

 

// Make a prototype inhibitory channel, "Inh_channel" 

make_Inh_channel /* synchan with Ek = -0.082, tau1 = tau2 = 20 msec */ 

 

/* Make a spike generator (spikegen) element "spike" - from 
protospike.g */ 

make_spike 

 

pope // Return to the original place in the element tree 

 

Note the use of several statements to include the files compartments.g, hh_tchan.g, synchans.g, and 
protospike.g. 

These files are not in the cells/simplecell directory, but are found in the 
genesis/Scripts/neurokit/prototypes directory. The GENESIS initialization file (.simrc in your home 
directory) sets the GENESIS search path (SIMPATH) to include this directory, so that these and many 
other files with prototype definitions can be accessed from any directory. 

These files contain definitions of some global variables for channel reversal potentials and the like, 
plus function definitions that create the prototype elements. For example, hh_tchan.g sets some 
default values for the cell resting potential EREST_ACT, the sodium reversal potential ENa, and the 
potassium reversal potential EK. It also declares the functions make_Na_hh_tchan and 
make_K_hh_tchan to make the Na and K channel elements. The protodefs.g file assigns different 
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values to these variables after hh_tchan.g is included, but before the functions that create the 
prototype channels are called. 

Usually the file containing the functions to create prototype channels will have some means of shifting 
the voltage scale for activation and time constant curves (minf and tau) by specifying a variable for the 
voltage offset in equations that depend on the membrane potential. Often the variable EREST_ACT is 
used for this purpose, as it can also represent the nominal resting potential of the cell for which the 
active channel models were developed. By using this as a global variable and changing it before 
calling the channel creation functions that are defined in the channel files, you can shift these curves. 
This can be very useful when you use a channel developed for one cell model in different cell. 

WARNING: Note that EREST_ACT is also used in the cell parameter file to give Em and the starting 
Vm(initVm). And, if you include more than one file with functions to create channels, these files may 
set different values for EREST_ACT or the ionic reversal potentials. If this is the case, you should be 
careful to reset these variables to the desired values, after including the file, and before invoking the 
channel creation functions defined in that file. 

Detour: Creating your own channel models 

Creating the graphics 

The file graphics.g can be used somewhat blindly, as long as you are happy with the default control 
panel and the graph that it creates. After including it, all you need to do is to invoke the make_control 
and make_Vmgraph functions and to send appropriate PLOT messages to the /data/voltage xgraph 
element. 

It is a good idea to keep the commands that involve graphics in a separate file, as we have done here. 
If you should later want to modify your simulation to run without graphics, as you might want to do 
when making long simulation runs on another networked computer, then you only need to make small 
changes to to the main simulation script. This will also allow you to easily add alternate Java-based 
user interfaces when GENESIS 3 is available. 

In future tutorials, we will build upon the simplecell model scripts to create more detailed cell models. 
There is also a much fancier version of this simulation in the cells/simplecell2 directory. This 
implements the same model neuron, but provides a fancier graphical interface with controls to allow 
pulsed injection current, synaptic input from spike trains, and random Poisson-distributed background 
synaptic activation. It also provides user-defined string variables in the main script that you can 
change to use with different cell models. 

If you need to modify this file for your own customized GUI, refer to the GENESIS Reference Manual 
section on the XODUS Graphical Interface, and the links given there for documentation for the 
XODUS "widgets" xbutton, xtoggle, xlabel, and xgraph. Chapter 14 of the BoG also explains some of 
the XODUS commands that were used to create a similar interface for tutorial3.g, and Chapter 22 
gives a very detailed treatment of XODUS. 

graphics.g 

/*=================================================================== 
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  A GENESIS GUI with a simple control panel and graph, with axis 
scaling 

  
====================================================================*/ 

 

include xtools.g    // functions to make "scale" buttons, etc. 

 

//=============================== 

//      Function Definitions 

//=============================== 

 

function step_tmax 

    step {tmax} -time 

end 

 

function overlaytoggle(widget) 

    str widget 

    setfield /##[TYPE=xgraph] overlay {getfield {widget} state} 

end 

 

//=============================== 

//    Graphics Functions 

//=============================== 

 

function make_control 

  create xform /control [10,50,250,180] 

  create xlabel /control/label -hgeom 25 -bg cyan -label "CONTROL \  

      PANEL" 

  create xbutton /control/RESET -wgeom 33%       -script reset 

  create xbutton /control/RUN  -xgeom 0:RESET -ygeom 0:label –wgeom \  

      33% -script step_tmax 

  create xbutton /control/QUIT -xgeom 0:RUN -ygeom 0:label -wgeom \    

      34% -script quit 

  create xdialog /control/Injection -label "Injection (amperes)" \ 

      -value 0.5e-9 -script "set_inject <widget>" 

  create xtoggle /control/overlay   -script "overlaytoggle <widget>" 
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  setfield /control/overlay offlabel "Overlay OFF" onlabel "Overlay \  

      ON" state 0 

  xshow /control 

end 

 

function make_Vmgraph 

    float vmin = -0.100 

    float vmax = 0.05 

    create xform /data [265,50,700,350] 

    create xlabel /data/label -hgeom 10% -label "Soma contains Na \   

        and K channels" 

    create xgraph /data/voltage -hgeom 90% -title "Membrane \  

        Potential" -bg white 

    setfield ^ XUnits sec YUnits Volts 

    setfield ^ xmax {tmax} ymin {vmin} ymax {vmax} 

    makegraphscale /data/voltage 

    xshow /data 

end 

 

function set_inject(dialog) 

    str dialog 

    setfield /cell/soma inject {getfield {dialog} value} 

end 

 

Some of the GENESIS features used in this file, and explained in the documentation links, are: 

• The use of a function overlaytoggle, that uses an xtoggle widget to set the overlay field of all 
xgraph objects, so that a new graph can be plotted after a reset, without clearing the graph. 
This is used with the xtoggle element that is created in make_control, to toggle back and forth 
between overlay mode and non-overlay mode. 

• The use of the wildcard expression "/##[TYPE=xgraph]" to mean any element in the element 
tree that is created from an xgraph object. The wildcard notation is explained in the GENESIS 
Reference Manual section on Hierarchical Structure. 

• The use of the getfield command to return the value of a field of an xtoggle, xdialog, or any 
other element. 

• The specification of position and dimensions [x, y, width, height] for xforms. 
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• The use of various ways of sizing and positioning of widgets, and setting labels and 
background colors. You may wish to experiment with these options. 

• The use of a xdialog widget with a label, default value string, and function to be executed (the 
"-script" argument). Note the use of the shorthand "<widget>" to refer to the widget itself, 
which in this case is the xdialog /control/Injection. 

• The use of the XUnits and YUnits fields of an xgraph to add labels to graph X and Y axes. 

• The use of the function makegraphscale (defined in the included file xtools.g) to create a 
"scale" button in the upper left corner of a graph, for changing axis scales.  

An exercise (highly recommended): 

Build some more cell simulations using the graphics.g file provided here, your own modified version of 
simplecell.g, and with the channel prototypes and cell parameter files found in some of the 
subdirectories of the cells directory. The corticalcells examples are a good place to start. The traubcell 
subdirectory has most of what you need to construct the 1991 Traub hippocampal CA3 region 
pyramidal cell model (see also Traub 1991). Each of these subdirectories of cells has a README file 
with further information. 

For this, it would be best to create your own directory to which you will copy the files that you will 
modify for your simulation. For example, assuming that you want to create a subdirectory in your 
home directory called newcell and it doesn't already exist, you might do the following from within the 
cells subdirectory of the "GENESIS Tutorials" directory: 

mkdir ~/newcell 

cp simplecell/* ~/newcell 

cp corticalcells/* ~/newcell 

cd ~/newcell 

You can then use your favorite text editor to modify any of these files. 

Another exercise 

The genesis/Scripts/neurokit/prototypes file yamadachan.g contains a function make_KM_bsg_yka to 
generate a Non-inactivating Muscarinic K current. This conductance was used in a model of a bullfrog 
stomatogastric ganglion cell, by Yamada, Koch, and Adams (1989). 

This slow hyperpolarizing current is responsible for spike frequency adaption, i.e., after a current 
injection causes the cell to begin firing, the spiking rate decreases and reaches a steady slower rate, 
as in the plot shown below (Fig. 4). 



GENESIS Tutorial © 2005 David Beeman  

             http//:www.brains-minds-media.org   November 2005, Vol.1 | bmm220  29 

 
Figure 4: Spike frequency adaption.  A current injection causes the cell to begin firing, the spiking rate 
decreases and reaches a steady slower rate. 

Your task is to add a KM_bsg_yka to the simplecell model. Use the same K reversal potential EK as 
used by the K_hh_tchan channel. Chose conductance densities that achieve a result similar to the one 
above, when the injection current is 0.5 nA (as with the simplecell simulation). HINT: Keep the 
Na_hh_tchan maximum conductance density at its original value of 1200 S/m2, but you will need to 
lower the K_hh_tchan maximum conductance considerably in order to compensate for the 
hyperpolarization contributed by KM_bsg_yka. If either of these potassium conductances are too 
large, the cell will not continue to fire. It will take a careful balance between them to produce the right 
result. 

I give up -- tell me what conductance densities to use (EXERCISE ANSWER). 

Next, we will learn how to add synaptically activated channels and make synaptic connections, in 
order to build networks. At some point, you may want to come back and follow the 

Detour: Making more realistic cell models 

But, let's now move on to the next tutorial section Making synaptic connections so that we can get 
started on modeling neural circuits and networks. 

Making synaptic connections 

Adding synapses and providing synaptic input 

We have already added an excitatory and an inhibitory synaptically activated channel to the /cell/dend 
compartment, and a spike element to the soma, but haven't yet made any use of them. 
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Usually, we can treat an axon as a simple delay line for the delivery of spike events that last a single 
time step, as shown in Fig. 5. Only if we are interested in understanding the details of axonal 
propagation would it be necessary to model the axon as a series of linked compartments. 

 
Figure 5: A threshold detector is used to convert the continuously varying action potentials to spike 
events that are propagated to a synapse after an appropriate axonal propagation delay.  In GENESIS, 
the spikegen object provides the threshold detection, and the synchan object implements the delay. 

The properties of an axon are split between two types of GENESIS objects. Spiking class elements (a 
spikegen or randomspike) create the spike events, either when Vm crosses a threshold during an 
action potential (spikegen), or as a random series of events generated at a specified average rate 
(randomspike). These send SPIKE messages to a synchannel class element (synchan, hebbsynchan, 
or facsynchan), which contains fields for the propagation delays and synaptic weighting for each 
synaptic connection. 

For example, to send somatic action potentials in cell1 to a synchan element "Ex_channel" in the 
dendrite compartment of cell2, you might use: 

create spikegen /cell1/soma/spike 

setfield /cell1/soma/spike thresh 0 abs_refract 0.005 output_amp 1 

addmsg  /cell1/soma  /cell1/soma/spike  INPUT Vm 

addmsg /cell1/soma/spike /cell2/dend/Ex_channel SPIKE 

setfield /cell2/dend/Ex_channel synapse[0].weight 10 \   

    synapse[0].delay 0.005 

 

In this example, a spike is generated by the spikegen when the soma Vm exceeds the threshold value 
of 0. The absolute refractory period has been set to 0.005 (5 msec) in order to prevent multiple spikes 
from being generated during the time that Vm is above threshold. Normally, the field abs_refract will 
be set to something greater than the maximum width of the action potential at threshold, and less than 
the minimum expected interspike interval. Each time a new SPIKE message is added, it creates a new 
synapse within the synchan. Here, this synaptic connection is labeled as "synapse[0]", as it was the 
first (of possibly several) to be established with the SPIKE message. 

In order to understand more about the use of these synaptically activated channels, you will need to 
read the documentation for Synaptic Connections in the GENESIS Reference Manual, and the 
documentation for synchan, spikegen, and randomspike. It will also be helpful to look at 
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genesis/Scripts/neurokit/prototypes/synchans.g in order to understand the properties of the channels 
Ex_channel and Inh_channel in /cell/dend. The Advanced Tutorial on "Simulating in vivo-like synaptic 
input patterns in multicompartmental models" (Edgerton 2005, this volume) describes how realistic 
spike trains can be generated as probability distributions, or read from experimental data. 

Then, try this simple exercise: 

Modify the simplecell.g script to add a randomspike element with an average spike rate of 200 spikes 
per second. Connect it to /cell/dend/Ex_channel, and set the soma current injection to zero. If you 
would like to play with XODUS graphics some more, plot the Ex_channel conductance Gk on another 
graph. 

If you get stuck, look at tutorial4.g ("the hard way") or tutorial5.g (with readcell). In addition to the 
random spike input, these scripts illustrate the coupling of a cell's spike output to a synchan, by 
providing a feedback connection from the cell to itself. Chapter 15 of the BoG gives a detailed 
description of the steps in the construction of tutorial4.g. 

Once you feel that you are ready, continue to the next section of this tutorial. This provides a more 
realistic exercise that connects two cells to each other to form a pattern generator circuit. 

Building small networks and circuits 

The goal of this exercise is to create a simple network of two cells that fire in alternate bursts. This will 
be made from two cells derived from the one created in the simplecell simulation, called /cell1 and 
/cell2. After you feel that you understand simplecell.g and its included files, and have studied the 
documentation on the use of the synchan and spikegen objects, copy the cells/simplecell files into a 
directory of your own. Then, make the changes necessary to create a second cell with no current 
injection, and plot its Vm on the graph in a different color. Of course, the plot will be a flat line, as it is 
receiving no stimulus. 

Then, use what you have learned about synaptic connections to connect the spike output of cell1 to 
the excitatory synchan of cell2, and the spike output of cell2 to the inhibitory input of cell1. Use an 
axonal propagation delay of 0.005 seconds for each connection. Finally, experiment with the synaptic 
weights for each synapse until you can achieve a pattern of alternate bursts of action potentials. To 
make it easy to change the weights, you may wish to add dialog boxes for entering weights to the 
control panel. 

This approach may also be used to create larger networks. However, GENESIS has a number of 
commands that are intended specifically to create large arrays of cells and to connect them into a 
network, with just a few lines of scripting code. That is the subject of the next section. 

Creating large networks with GENESIS 

Now that we know how to make models of single neurons, and to make simple circuits of synaptically-
connected neurons, it's time to get the next step in "modeling the brain" -- creating large networks of 
biologically realistic neurons, connected according to our best knowledge from physiology. 
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The procedure for constructing of large networks with GENESIS is covered in BoG Chapter 18. This 
chapter gives detailed descriptions for using the various options of the network creation commands 
that are summarized in the GENESIS Reference Manual section on Synaptic Connections. The WAM-
BAMM 2005 Advanced Tutorial on Constructing Large-scale Network Models at http://www.wam-
bamm.org/WB05/Tutorials provides some good advice on the issues encountered, and describes the 
process of constructing biologically realistic large networks of neurons. It uses examples taken from 
an improved "next-generation" model of the piriform cortex. 

The chapter in the BoG uses examples from the venerable genesis/Scripts/orient_tut simulation, a 
very simple model of orientation selectivity, involving two layers of cells. 

This tutorial uses a somewhat simpler example, consisting of a grid of simplified neocortical regular 
spiking pyramidal cells, each one coupled with excitory synaptic connections to its four nearest 
neighbors. This might model the connections due to local association fibers in a cortical network. The 
example simulation, in the networks/RSnet directory, was designed to be easily modified to allow you 
to use other cell models, implement other patterns of connectivity, or to augment with a population of 
inhibitory interneurons and the several other types of connections in a cortical network. 

You may examine the cell model itself, and explore its response to different types of inputs by running 
and examining the scripts in the cells/RScell directory. This is a very simple one-compartment model 
that, like the exercise in “Building a cell the easy way”, uses a Muscarinic potassium current (KM) in 
order to achieve spike frequency adaption. This model, based on a paper and simulation by Destexhe 
et al. (2001), uses channels that give more realistic firing patterns than those in our exercise. The 
simplicity of this cell model allows our example network of 625 neurons to run fairly quickly. 

But, it is important to note that single-compartment models with only these three ionic conductances 
have limitations. Although the KM current may play a role in spike frequency adaption of cortical 
pyramidal cells, the behavior of these cells is largely determined by calcium currents and at least two 
varieties of calcium-activated potassium currents. You may explore some more realistic cortical 
pyramidal cell models by running the simulations in the cells/corticalcells directory. The 
genesis/Scripts/traub91 tutorial demonstrates the effects of these currents in burst-firing hippocampal 
pyramidal cells. For more on this subject, you can follow the detour: 

Detour: Making more realistic cell models 

 

The example simulation 

Before we dissect the RSnet.g script, let's look at the simulation and its GUI. As with the scripts for 
RScell and simplecell2, the main script and the GUI (in graphics.g) were designed as fairly general 
templates that you can modify to experiment with your own network and cell models. It can be 
customized for another cell by changing strings that are defined in the main script. 
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When you run RSnet.g with the default parameters, you will see something like the display shown in 
Fig. 6: 

 
Figure 6: The RSnet simulation control panel (left) and the plot of membrane potential of cells at the 
center, right edge, and lower left corner of the network (middle). The display at the right shows the  
membrane potential in each cell of the network. 

The CONTROL PANEL allows injection pulses to be applied to a selected cell in the network and/or 
random synaptic activation to be applied to each cell. The latter is done by setting the 'Frequency' 
dialog box to a non-zero value. This sets the frequency field of each synchan to the given value. The 
injection may be turned on and off by clicking on the 'Current Injection ON/OFF' toggle. Under 
'Connection Parameters', 'synchan gmax' is used to set the gmax field of the synchan of each cell. The 
'Weight' parameter acts as a multiplier of gmax for connections to the cells, but not for the random 
activation. Thus, the amplitude of the of the random synaptic input can be increased or decreased 
relative to the network synaptic input by appropriate scaling of 'synchan gmax' and 'Weight'. 

The 'Delay' dialog is for setting the fixed axonal delay of each synchan to the same value. Comments 
in RSnet.g explain how to use a conduction velocity instead, to scale the delay according to the 
distance between cells. 

You can explore the connections that are made by invoking the 'synapse_info' function at the genesis 
prompt. This function is defined, with further explanation, in the file synapseinfo.g, which is included by 
RSnet.g. For example, 

genesis #5 > synapse_info /network/cell[312]/soma/Ex_channel 

synapse[0] : src = /network/cell[287]/soma/spike weight =10 \         

    delay=0.002 

synapse[1] : src = /network/cell[311]/soma/spike weight =10 \         

    delay=0.002 

synapse[2] : src = /network/cell[313]/soma/spike weight =10 \         
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    delay=0.002 

synapse[3] : src = /network/cell[337]/soma/spike weight =10 \         

    delay=0.002 

 

The 'Membrane Potenial' plot shows Vm for the center cell soma, and that for ones on the right edge 
and lower left corner. Each of these additional plots is displaced vertically by 0.5 V from the others, for 
easier viewing. 

The function make_netview, defined in graphics.g, illustrates the use of the xview widget to display the 
Vm of each cell on the grid, using a cold to hot colorscale. To speed up the simulation somewhat, the 
line that invokes this function may be commented out. 

Constructing the network 

There are five steps to constructing the network. Each of these is described in a corresponding 
commented section of RSnet.g. 

1. Create any prototype channels, compartments, etc. that will be used to build the cells. 

2. Create a prototype cell, coupled to an excitatory synchan and a spikegen. 

3. Use the createmap command to copy the prototype into a 2D array of cells. 

4. Use the planarconnect command to connect each cell's spikegen to synchans on the four 
nearest neighbors. 

5. Use the planardelay and planarweight commands to provide appropriate axonal delays and 
synaptic weights to the connections.  

Here are the statements used in RSnet.g for each of these steps: 

Step 1: Assemble the components to build the prototype cell under the neutral element /library, all of 
this is done in the protodefs.g file, which is similar to those used in making the prototypes used for 
single cell models: 

include protodefs.g  // This creates /library with the cell components 

Step 2: Create the prototype cell specified in RScell.p, using readcell. Then, set the maximal 
conductance of the excitatory synchan in the appropriate compartment, and the threshold and 
absolute refractory period of the spikegen that is attached to the soma. 

readcell RScell.p /library/cell 

setfield /library/cell/soma/Ex_channel gmax {gmax} 

setfield /library/cell/soma/spike thresh 0  abs_refract 0.004 \    

    output_amp 1 
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In this case, the synchan is in the soma compartment, with the maximal conductance specified in the 
variable 'gmax'. A spike will be generated when Vm exceeds a voltage of zero, unless one has 
previously been generated within the last 4 msec. 

Step 3: Make a two-dimensional array of cells with copies of /library/cell. 

createmap /library/cell /network {NX} {NY} -delta {SEP_X} {SEP_Y} 

The usage of the createmap command is 

createmap source dest Nx Ny -delta dx dy [-origin x y] 

There will be NX cells along the x-direction, separated by SEP_X, and NY cells along the y-direction, 
separated by SEP_Y. The default origin is (0, 0). This will be the coordinates of cell[0]. The last cell, 
cell[{NX*NY-1}], will be at (NX*SEP_X -1, NY*SEP_Y-1). 

Step 4: Now connect them up, using the planarconnect command. This command establishes synaptic 
connections between groups of elements based on the x-y positions of the elements. It does this by 
adding SPIKE messages between source and destination elements, using a large number of options 
to specify just which ones are to be included. Although this makes the syntax somewhat complex, it 
allows a wide variety of patterns of connections. The usage is of the form 

 planarconnect source-path destination-path 

      [-relative] 

      [-sourcemask {box,ellipse} xmin ymin xmax ymax] 

      [-sourcehole {box,ellipse} xmin ymin xmax ymax] 

      [-destmask   {box,ellipse} xmin ymin xmax ymax] 

      [-desthole   {box,ellipse} xmin ymin xmax ymax] 

      [-probability p] 

 

These options are described in more detail in Chapter 18 of the BoG, and the documentation for 
planarconnect. 

In this simulation, we want to connect each source spike generator to the excitatory synchans on the 
four nearest neighbors. To do this, we define the sourcemask to be a rectangle (box) with a very large 
range (-1 to +1 meters!), so that every cell in the network will be treated as a source. We want the 
destination, relative to the source to be an ellipse (or circle) that is large enough to include the four 
neighbors. It is generally a good idea to set the destmask ellipse axes or box size somewhat higher 
than the cell spacing, to be sure that the cells are included. Although this isn't a problem with our 
single-compartment cell, it can be an issue if the destination synapses are located in a distal dendrite 
compartment that is displaced by some amount from the cell origin. We also want to define a 
"destination hole" region that excludes the source cell, so that it doesn't connect to itself. This is 
implementented in RSnet.g with the statement: 
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planarconnect /network/cell[]/soma/spike 
/network/cell[]/soma/Ex_channel \ 

-relative \ // Destination coordinates are measured relative to source 

-sourcemask box -1 -1  1  1 \ // Larger than source area -> all cells 

-destmask ellipse 0 0 {SEP_X*1.2}  {SEP_Y*1.2} \ 

-desthole box {-SEP_X*0.5} {-SEP_Y*0.5} {SEP_X*0.5} {SEP_Y*0.5} \ 

-probability 1.1 // set probability > 1 to connect to all in destmask 

 

Note the use of the wildcard notation 'cell[]' to indicate all indices of the cell objects. Here, the 
'desthole' could just as well have been an ellipse. The variables SEP_X and SEP_Y had previously 
been set to the desired spacing between cells, 0.001 meters. To connect to nearest neighbors and the 
4 diagonal neighbors, we would use a box for the destmask: 

-destmask box {-SEP_X*1.01} {-SEP_Y*1.01} {SEP_X*1.01} {SEP_Y*1.01} 

For all-to-all connections with a 10% probability, set both the sourcemask and the destmask to have a 
range much greater than NX*SEP_X using options 

    -destmask box -1 -1  1  1 

    -probability 0.1 

Step 5: Set the axonal propagation delay and weight fields of the target synchan synapses for all 
spikegens, to the values previously defined for 'prop_delay' and 'syn_weight': 

planardelay /network/cell[]/soma/spike -fixed {prop_delay} 

planarweight /network/cell[]/soma/spike -fixed {syn_weight} 

To scale the delays according to distance instead of using a fixed delay, use 

planardelay /network/cell[]/soma/spike -radial {cond_vel} 

and change the dialogs in graphics.g to set 'cond_vel'. This would be appropriate when connections 
are made to more distant cells. 

Other options described in the documentation for planardelay and planarweight allow some 
randomized variations in the delay and weight, to make a more realistic simulation of a biological 
network. There are also three-dimensional equivalents to planarconnect, planardelay, and 
planarweight, called volumeconnect, volumedelay, and volumeweight. 

Some other things to try 

The example script in genesis/Scripts/examples/fileconnect gives an example of reading in a network 
connection matrix from a file with the fileconnect command. 
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If you would like to experiment with models having spike timing dependent plasticity, see the 
documentation for the hebbsynchan and facsynchan objects, and the examples in the GENESIS 
Scripts/examples directory. 

More realistic cortical cell models tend to have a more pronounced hyperpolarization after the action 
potentials and a "more absolute" refractory period. This makes it possible to have propagating rings of 
activation generated by injection pulses, rather than continuous firing, as in this model. (For example, 
see Kudela et al. 1999). Modify the RSnet simulation to use the more detailed BDK5cell neocortical 
pyramidal model from the cells/corticalcells directory, and see if you can produce this effect. What 
effect does the propagation delay have on the waves? 

Another 'exercise for the reader' would be to use the GENESIS parameter search routines to vary the 
RScell parameters, in order to create a cell that more closely duplicates the current injection behavior 
seen in a specific set of experimental data. Then compare the two models when used in a network. 

Of course, a realistic cortical network will have a large number of inhibitory connections, mediated by 
interneurons that receive excitatory inputs and then make inhibitory connections to pyramidal cells. 
The lack of inhibition in this example network is responsible for the fact that, once a wave of excitation 
begins to propagate, the cells are firing near their maximum frequency and, as seen in the 'Membrane 
Potenial' plot, the amplitude of the action potentials is somewhat reduced because of this 
overstimulation. Inhibitory interneurons are generally of the "Fast Spiking" category, with little or no 
spike frequency adaptation, such as the simplecell model that we examined previously. Try adding a 
layer of these cells to the network, and make suitable excitatory connections to them from the RScells, 
and connections from them to inhibitory synchans in the RScells. For suggestions on possible "wiring 
diagrams" to use, see Douglas and Martin (1989), or Shepherd (1990). 

What next? 

Now you have the tools to begin "modeling the brain". The last section of this tutorial points you 
towards some information about other useful GENESIS features that we haven't yet discussed. 

Where do we go from here? 

Here are some suggestions and resources for learning more advanced GENESIS programming 
techniques. 

Using implicit numerical methods 

The default integration method (exponential Euler) is fine for simple models with just a few 
compartments. Models with many compartments should use an implicit method (e.g. Crank-Nicholson) 
with the Hines algorithm in order to avoid numerical instabilities. This is implemented, along with other 
speedups, in the GENESIS hsolve object. This is covered in BoG Chapter 20 and the GENESIS 
documentation for hsolve. For example scripts, see genesis/Scripts/examples/hines for examples. 
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Spike train objects in GENESIS 

To understand single neuron computation it is desirable that realistic input patterns be given to model 
neurons in the study of the input-output function. Spike train objects can be used to generate input 
patterns in place of a full network model, which is often not available. Other GENESIS objects can be 
used to generate histograms of cross-correlations, auto-correlations, interspike intervals, and others. 
The Advanced Tutorial on Simulating in vivo-like synaptic input patterns in multicompartmental models 
(Edgerton 2005, this volume) describes how realistic input patterns can be given to model neurons, 
using the tools available in GENESIS. 

Using GENESIS on parallel computers 

Parallel GENESIS (PGENESIS) is an extension of GENESIS for use on parallel computers and 
networks of workstations. It is useful for simulations that must be run many times independently, such 
as parameter searching, and is used for large scale models that can benefit from the speed 
advantages of parallelism, especially large network models. The Advanced Tutorial on Parallel 
GENESIS (Hood 2005, this volume) presents in-depth example scripts, and discusses topics such as 
efficient network partitioning, synchronization issues, parallel I/O, parallel parameter searching, load 
balancing, scaling behavior, and debugging strategies. PGENESIS is also covered in considerable 
detail in BoG Chapter 21. 

Other examples and GENESIS features 

For performing parameter searches to "tune" a model, see genesis/Scripts/param, and the 
documentation for the GENESIS Parameter Search Library given in the GENESIS Reference Manual. 
The Advanced Tutorial on Parameter Searching Tools in GENESIS at http://www.wam-
bamm.org/WB05/Tutorials gives a good overview of parameter searching and a discussion of the 
issues involved, suggestions, hints, and pitfalls. 

A demonstration of the use of GENESIS for modeling biochemical reactions such as occur in 
biochemical signaling pathways can be found in genesis/Scripts/kinetikit, and in the Advanced Tutorial  
on Modeling Calcium and Biochemical Reactions (Blackwell 2005, this volume). BoG Chapter 10 
provides an introduction to the biochemistry involved, and a tutorial on Kinetikit and the GENESIS 
kinetics library. 

If you need to create your own new GENESIS objects and commands, see the documentation on 
Customizing GENESIS in the GENESIS Reference Manual. 

The genesis/Scripts/examples directory has examples of other genesis capabilities such as Hebbian 
and facilitating synapses, Markovian channels, Ca diffusion in spines, and various types of device 
objects for input and output, or for applying stimuli to model neurons. 

For a summary of all the objects that are available in GENESIS, see the Objects section in the 
GENESIS Reference Manual. To simply see a list of available objects, type "listobjects" from within 
GENESIS. To see a list of commands, type "listcommands". 
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Appendix: Detours 

Detour 1: Building a cell without the cell reader 

Chapter 14 of the BoG develops the script tutorial3.g to add Hodgkin-Huxley Na and K channels to the 
single soma compartment that was created in tutorial2.g. The newer version newtutorial3.g is similar, 
but uses the preferred tabchannel object. 

In either case, the channel is created by calling a function in an included file, as described later in the 
"Building a cell the easy way" tutorial. However, instead of using the cell reader to put the channels in 
the right place in the element hierarchy and to connect them to the soma, the scripts use statements 
like: 

// Create two channels, "/cell/soma/Na_squid_hh" and 
"/cell/soma/K_squid_hh" 

pushe /cell/soma 

make_Na_hh_tchan 

make_K_hh_tchan 

pope 

// The soma needs to know the value of the channel conductance 

// and equilibrium potential in order to calculate the current 

// through the channel.  The channel calculates its conductance 

// using the current value of the soma membrane potential. 

addmsg /cell/soma/Na_hh_tchan /cell/soma CHANNEL Gk Ek 

addmsg /cell/soma /cell/soma/Na_hh_tchan VOLTAGE Vm 

addmsg /cell/soma/K_hh_tchan /cell/soma CHANNEL Gk Ek 

addmsg /cell/soma /cell/soma/K_hh_tchan VOLTAGE Vm 

In tutorial4.g, developed in BoG Chapter 15, a dendrite compartment is created, and then connected 
to the soma with messages illustrated in Fig. A1, and the GENESIS statements 

addmsg /cell/dend /cell/soma RAXIAL Ra previous_state 

addmsg /cell/soma /cell/dend AXIAL  previous_state 

 
Figure A1: The messages and GENESIS commands that couple adjacent neural compartments. These 
allow the simulator to calculate the current flow between compartments. 
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In the first message, the dendrite compartment is linked to the soma with a message of the type 
RAXIAL, and a message link is established whereby two value fields, Ra and previous_state, will be 
sent from the dendrite to the soma at each simulation step. This allows the soma to calculate the 
current entering from the dendrite compartment. The previous_state field gives the value of the 
membrane potential at the previous integration step. We use this field rather than Vm because we 
want each compartment to update its data fields using data from the previous simulation step. 

This establishes the information flow from the dendrite to the soma. In the reverse direction, the 
dendrite needs to receive the value of the soma's previous membrane potential in order to update its 
own state. (The dendrite already knows its own axial resistance to the soma, so the AXIAL message 
need not include information regarding axial resistance.) 

The section of this tutorial on Making synaptic connections describes the spike generator that the cell 
reader adds to the soma. In tutorial4.g, this is accomplished with the statements: 

// add a spike generator to the soma 

create spikegen /cell/soma/spike 

setfield /cell/soma/spike  thresh 0  abs_refract 0.010  output_amp 1 

/* use the soma membrane potential to drive the spike generator */ 

addmsg  /cell/soma  {path}/soma/spike  INPUT Vm 

 

The use of the spikegen object is described in the GENESIS Reference Manual section on Synaptic 
Connections and in the documentation for the spikegen object. 

Detour 2: Creating and modifying channel models 

You can find prototype definitions for many specific types of channels in the 
genesis/Scripts/neurokit/prototypes directory. The files in this directory, LIST and LIST.description, 
summarize the ones that are available. 

Many of these prototype files make use of the variable EREST_ACT, which can be changed to 
another value, in order to shift the voltage dependence of the steady state activation and time constant 
up or down. For example, hh_tchan.g was designed for a mitral cell simulation with a resting potential 
of -0.06 volts. The simplecell simulation changed this to -0.07 volts for use in a cell that has a resting 
potential of -0.07 volts. 

At some point, you may need to make more extensive changes in these scripts, or write your own. As 
a start, we will examine the K channel that is implemented with a tabchannel object by the 
make_K_hh_tchan function in hh_tchan.g. Older GENESIS simulations, such as tutorial3.g, implement 
this type of channel with the hh_channel object. We recommend that you use the faster and more 
versatile tabchannel, instead. genesis/Scripts/tutorials/newtutorial3.g shows how to use tabchannels 
instead of the hh_channels that are used in tutorial3.g. 

The basic equations that determine the conductance of the K channel in the squid giant axon are: 
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                                                                                                                                            (3) 

The simulator will solve the equation for dn/dt, so it is only necessary to specify the maximum 
conductance, represented by the field Gbar in the tabchannel object, the exponents for up to three 
gates (of which we only have one, n), and tables to represent the voltage dependence of the last two 
equations for the rate variables alpha and beta. 

The relevant part of hh_tchan.g is 

str chanpath = "K_hh_tchan" 

create tabchannel {chanpath} 

setfield ^ Ek {EK} Gbar {360.0*SOMA_A} Ik 0 Gk 0 \  

Xpower 4 Ypower 0 Zpower 0 

setupalpha {chanpath} X {10e3*(0.01 + EREST_ACT)} -10.0e3  \ 

    -1.0 {-1.0*(0.01 + EREST_ACT)} -0.01 125.0 0.0 0.0  \   

    {-1.0*EREST_ACT} 80.0e-3 

 

This sets the reversal potential Ek to the value previously assigned to the variable Ek, and the 
exponent for the n gate (represented by the X gate field of the tabchannel) to 4. As there is no 
inactivation or other gate, the exponents for the Y and Z gates are set to 0 (the default). Gbar will 
normally be set by the cell reader, but it is given the Hodgkin-Huxley value of 360 S/m2 times the soma 
area, in case it is used without the cell reader, with an appropriate value of SOMA_A. Setting Ik and 
Gk is not really necessary, as they will be recalculated by the simulator. 

The function setupalpha uses a generalized version of the Hodgkin-Huxley rate variables α and β, 
namely (A + B*Vm)/(C + exp((Vm + D)/F)), in order to set up the tabchannel tables. The 10 
arguments correspond to the A, B, C, D, and F parameters for α and for β. A similar function, 
setuptau, allows this form to represent the voltage-dependent activation time constant and steady 
state activation, instead. A large percentage of published voltage-dependent Hodgkin-Huxley type 
channel models fit this general form. For the others, one has to fill the tables with either an equation 
evaluated in a loop, or a set of experimentally measured values. The documentation for tabchannel 
gives the details. It would also be useful to look at the documentation for setupalpha, setuptau, 
tweakalpha, and tweaktau. 

Chapter 19 of the BoG covers the use of tabchannels to make calcium-dependent and other types of 
channels, using examples from the traub91chan.g and ASTchan.g prototype files. These files are 
extensively commented, and illustrate many of the ways to use a tabchannel. For Ca-dependent 
channels, be sure to read the documentation for the Ca_concen object. 
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Detour 3: Making more realistic (cortical) cell models 

Why bother? 

Jim Bower has discussed the value of structurally realistic modeling in his introductory remarks on 
WAM-BAMM and the modeling philosophy behind the GENESIS approach to modeling in: "Looking for 
Newton: Realistic Modeling in Modern Biology" (Bower 2005, this volume). You can also read his 
thoughts on choosing the level of detail to use in modeling in BoG Chapter 11. 

The simple cell model that we have been using so far, described in Building a cell the easy way, fires 
at a steady rate, with equal intervals between spikes. With the addition of a non-inactivating 
muscarinic potassium current, it was possible to produce a non-uniform firing pattern with spike 
frequency adaptation. The RScell simulation in the cells/RScell directory is another simple one-
compartment model that has a somewhat more realistic firing pattern. We might ask, how important is 
it to accurately reproduce the firing pattern of a typical pyramidal cell when picking a cell model to use 
in a cortical network? What is the effect of the spike latency and initial interspike interval (ISI) vs. the 
final ISI in determining the behavior of a network of neurons that display spike frequency adaptation? 
Is the RScell model good enough to use in a realistic network model? 

 
Figure A2: Spike frequency adaptation, showing the latency to the first spike T0, and increasing time 
intervals between spikes. 

Current clamp experiments on neocortical pyramidal cells often show results similar to the simulation 
results shown in Fig. A2 (generated from the detailed BDK5cell simulation in the cells/corticalcells 
directory). Is it necessary that a model neuron used in a large network accurately fit the timing of these 
action potentials? Or will the large variation in properties of individual neurons somehow "wash out" 
these details in the network, and allow us to use much simpler models? This is still an open question 
that may be answered by further modeling studies. However, there are indications that this variable 
spike timing can significantly affect network behavior. 

Here T0 is the spike latency, or time between the application of the injection pulse and the first spike. 
Under conditions of low excitation, this could act as an additional propagation delay, and affect the 
behavior of the network. The increasing interspike intervals T1 - T5 can also affect the behavior of the 
network. Under conditions of high excitation, when the neuron is firing continuously, the later ones will 
be more relevant than the early ones. 



GENESIS Tutorial © 2005 David Beeman  

             http//:www.brains-minds-media.org   November 2005, Vol.1 | bmm220  43 

Spike frequency adaption may also be used as a mechanism for processing behaviorally relevant 
stimuli in the presence of many other sources of synaptic input. For example, Benda et al. (2005) have 
presented evidence that spike frequency adaption is used as a high pass filter to separate transient 
signals from slower oscillatory signals in the electrosensory system of weakly electric fish.  

Building the model 

The process of building a biologically realistic compartmental model of a neuron involves three steps: 

1. Build a suitably realistic passive cell model, without the variable conductances. This subject is 
treated briefly in the Introduction to Realistic Neural Modeling section on Constructing the 
passive cell (Beeman 2005), and in detail in the Advanced Tutorial on Realistic Single Cell 
Modeling (Jaeger 2005, this volume). 

2. Add voltage and/or calcium activated conductances. See BoG Chapter 7 for an overview of 
the various types of ionic conductances, such as calcium conductances, calcium-activated 
potassium conductances, and inactivating potassium conductances, and how they affect firing 
properties 

3. Tune the model to better fit passive properties and channel parameters that are known only 
approximately from experiment. Chapter 7 of the BoG describes how the cell and channel 
editing features of Neurokit may be used to perform manual parameter searches. The 
GENESIS Reference Manual section on the GENESIS Parameter Search Library and the 
example scripts in genesis/Scripts/param describe powerful methods for performing 
automated parameter searches in GENESIS. The Advanced Tutorial on Parameter Searching 
Tools in GENESIS at http://www.wam-bamm.org/WB05/Tutorials gives a good overview of 
parameter searching and a discussion of the issues involved, suggestions, hints, and pitfalls. 
Also see Vanier and Bower (1999). 

The Advanced Tutorial on Realistic Single Cell Modeling (Jaeger 2005, this volume) examines the 
complete process of constructing a structurally realistic neuron model, using specific examples of 
modeling cerebellar neurons. 
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