

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm220

ISSN: 1861-1680

GENESIS Modeling Tutorial

David Beeman

Electrical and Computer Engineering Department, University of Colorado, Boulder, USA.

Phone: (303) 492-2852, fax: (303) 492-2758, email: dbeeman@dogstar.colorado.edu

 urn:nbn:de:0009-3-2206

Abstract. This tutorial is intended to be a "quick start" to creating simulations with GENESIS. It should give you
the tools and enough information to let you quickly begin creating cells and networks with GENESIS, making
use of the provided example simulations. Advanced topics are covered by appropriate links to the Advanced
Tutorials on Realistic Neural Modeling.

Keywords: computational neuroscience, realistic neural modeling, simulations, GENESIS, tutorial

Citation: Beeman D (2005). GENESIS Modeling Tutorial. Brains, Minds and Media, Vol. 1, bmm220
(urn:nbn:de:0009-3-2206)

Licence: Any party may pass on this Work by electronic means and make it available for download under the
terms and conditions of the Digital Peer Publishing Licence. The text of the licence may be accessed and
retrieved via Internet at http://www.dipp.nrw.de/lizenzen/dppl/dppl/DPPL_v2_en_06-2004.html.

Supplementary Material

GENESIS Resources

Installation Guidelines

Datasheet

Introduction

This is an updated version of the multi-part GENESIS Modeling Tutorial for the 2005 WAM-BAMM
(http://www.wam-bamm.org) meeting on realistic biological modeling in San Antonio, TX. It was
offered as a "take-home" hands-on tutorial to be used for self-study, following the Introduction to
Realistic Neural Modeling tutorial (Beeman 2005, this Volume). It is intended to be a "quick start" to
creating simulations with GENESIS, and will give you enough information to let you quickly begin
creating cells and networks with GENESIS.

GENESIS Tutorial © 2005 David Beeman

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm220 2

One way to use the tutorial is to go through it at a leisurely pace, exploring all the links to detailed
information and documentation as you create models and perform the exercises. Another way is to
take the most direct path, creating models without always understanding the details of what you have
done. If you opt for this path, be sure to return to pick up the details when your lack of understanding
makes progress difficult. Take your pick!

The tutorial makes frequent references and links to sections of the GENESIS Reference Manual1. This
is primarily a summary of the syntax used by the GENESIS Script Language Interpreter, the
commands which it recognizes, and of the GENESIS "objects" that are available for constructing
simulations. It also refers to chapters in The Book of GENESIS, by James M. Bower and David
Beeman (1998). The second edition of this book, familiarly called "The BoG", was originally published
by Springer-Verlag. As the publisher does not plan to reprint the book, the copyright has been
reclaimed by the authors, and we are now able to offer it as a free "Internet Edition"2, with links to it in
this package of Tutorials.

The BoG gives a detailed coverage of realistic neural modeling from the subcellular to the network
level, and provides the detailed guide to the construction of GENESIS simulations that is missing from
the Reference Manual. This tutorial is constructed to minimize your need for the BoG. Nevertheless,
this short tutorial can't possibly go into all the detail of a 482 page book, so you may wish study it in
some detail, if you later decide to do some serious work with GENESIS. There are links to chapters in
the BoG throughout this tutorial, in order to provide more information on some of the topics that we will
cover.

GENESIS Scripting

If you have read the Introduction to Realistic Neural Modeling (Beeman 2005, this volume), you will be
familiar with the rich variety of graphical user interfaces (GUIs), that are possible with GENESIS. In
fact, it is possible to create and run GENESIS simulations with little or no programming, by using
Neurokit (for single cells) or Kinetikit (for biochemical reactions). But, sooner or later, you will want the
flexibility of creating your own GENESIS scripts.

The bad news is that to get the maximum benefit from GENESIS and from this tutorial, you will have to
do some programming in the GENESIS scripting language. The good news is that the modular object-
oriented nature of GENESIS makes it easy to modify existing scripts. Once you have learned a few
basics of GENESIS scripting and have some good example simulation scripts to get you started, you
can create most of your simulations by simple "hacking" of existing scripts. That is the approach taken
in this tutorial, and by most GENESIS modelers.

Some preliminaries

Before you start, you will need a little background.

1 The GENESIS Reference Manual http://www.genesis-sim.org/GENESIS/Hyperdoc/Manual.html; last visit August 01, 2005.
2 James M. Bower and David Beeman 2003 - Free Internet Edition (pdf) of The Book of Genesis, 2nd Edition.
http://www.genesis-sim.org/GENESIS/bog/bog.html; last visit: August 01, 2005

GENESIS Tutorial © 2005 David Beeman

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm220 3

• You should have some basic knowledge of compartmental modeling, which is covered in detail
in the BoG. You can get a brief overview in parts of the Lectures on Computational
Neuroscience3. The book Methods in Neuronal Modeling (Koch and Segev 1998) is another
good reference. The Introduction to Realistic Neural Modeling (Beeman 2005, this volume) will
also be a good background for understanding what follows.

• You should have GENESIS installed, and know how to start it up. You will need to know where
GENESIS is installed. There will be a directory genesis that contains the executable program
"genesis" and other directories, such as Scripts, which contains the example and tutorial
simulation scripts that are distributed with GENESIS. So, when we refer to genesis/Scripts, you
will need to know the full path, e.g. /usr/local/genesis/Scripts, in order to locate these files. You
will also need to know where these tutorials are installed, as they may refer to the "GENESIS
Tutorials directory", or to a file within this directory such as cells/simplecell/simplecell.g.

• The "GENESIS Tutorials directory" is an optional package that would normally be installed as
genesis/Tutorials. It contains this tutorial (in Tutorials/genprog), other GENESIS tutorials, the
cells directory (in Tutorials/cells), and other directories used by the GENESIS tutorials. The
procedure for obtaining, installing and running GENESIS and the Tutorials package is given in
the README file in the supplementary material or in the original Tutorials directory,
respectively.

• You will need to know how to get around in a UNIX command-line environment, and how to use
a text editor. Fortunately, you only need to know a little. You can learn most of what you need
to know about UNIX in order to use GENESIS in this Introduction to UNIX or Linux and the
graphical desktop.

The two most common text editors for UNIX are 'vi' and 'emacs'. If you are not familiar with either
editor, you may find it easier to learn emacs. For an even simpler text editor with built-in help, try 'pico'
if it is installed. If you are using Linux with the GNOME or KDE desktop, try 'gedit' or 'kedit".

Getting started with GENESIS programming

The building blocks used to create simulations under GENESIS are referred to as "elements".
Elements are created from templates called "objects". This terminology can be somewhat confusing,
because a GENESIS object is similar to what object-oriented languages such as Java or C++ call a
"class", and a GENESIS element corresponds to an "object" in these languages. In GENESIS,
elements are created as instantiations of a particular object.

Simulations are constructed from these modules that receive inputs, perform calculations on them,
and then generate outputs. Model neurons are constructed from these basic components, such as
compartments. and variable conductance ion channels.

3 Dave Beeman – Lectures on Computational Neuroscience, http:/www.genesis-sim.org/GENESIS/cnsweb/cnslecs.html; last
visit: August 1, 2005.

GENESIS Tutorial © 2005 David Beeman

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm220 4

The various elements in a GENESIS simulation are organized in a tree like the one shown below, and
are referenced with a notation similar to that used in UNIX directory trees. Thus,
"/net/cell[1]/dend[2]/GABA" might refer to an inhibitory synaptically activated conductance residing in
the dendrite compartment 2 of cell 1 of a network.

Figure 1: The various elements in a GENESIS simulation are organized in a tree and are referenced
with a notation similar to that used in UNIX directory trees.

These objects communicate by passing messages to each other, and each contain the knowledge of
their own variables (fields) and the methods (actions) that they use to perform their duties during a
simulation. For example, during a simulation step, the PROCESS action will be carried for each type
of object in its own way. If it is a voltage activated channel, this means carrying out a step in the
numerical solution of the Hodgkin-Huxley equations for the conductance. If it is a graph object, this
would mean plotting a point with data from any messages that it receives from other objects.

GENESIS Scripting Example

tutorial1.g

The use of the GENESIS scripting language can best be illustrated with a simple example like the
script from genesis/Scripts/tutorials/tutorial1.g.

//genesis script for a simple compartment simulation (Tutorial #1)
// create a parent element

create neutral /cell

// create an instance of the compartment object

create compartment /cell/soma

// set some internal fields

setfield /cell/soma Rm 10 Cm 2 Em 25 inject 5

GENESIS Tutorial © 2005 David Beeman

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm220 5

// create and display a graph inside a form

create xform /data

create xgraph /data/voltage

xshow /data

// set up a message (PLOT Vm) to the graph

addmsg /cell/soma /data/voltage PLOT Vm *volts *red

addmsg /cell/soma /data/voltage PLOT inject *current *blue

// make some buttons to execute simulation commands

create xbutton /data/RESET -script reset

create xbutton /data/RUN -script "step 100"

create xbutton /data/QUIT -script quit

check // perform a consistency check for each element

reset // initialize each element before starting the simulation

This would produce the display:

Figure 2: Display for tutorial1.g.

GENESIS Tutorial © 2005 David Beeman

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm220 6

Unless you have some previous experience with GENESIS (or are very impatient), you should quickly
run through the updated web version of Matt Wilson's original “Basic tutorial on using GENESIS” (skip
Basic Tutorial). This gives an introduction to the most common GENESIS commands for creating,
interacting with, and debugging GENESIS simulations on the command line, and leads you through
the steps of creating the tutorial1.g script. (This tutorial was later expanded to become Chapter 12 of
the BoG)

A Basic Tutorial on GENESIS - Constructing a Simple Compartment

Originally written by Matt Wilson

This document will guide you through a brief session under GENESIS in which you will use the basic
features of the simulator to create and run a simple simulation.

Some Notation

In this guide you will be instructed, at various points, to enter GENESIS commands through the
keyboard. This will be indicated by showing the text that you should enter in a monospaced
"typewriter" font. For example:

type this

Getting Started

To run the simulator, first make sure that you are at the UNIX shell command prompt. At the prompt
type genesis. If your path is properly configured this should start up the simulator and display the
opening credits. If you get a message such as genesis: Command not found, check your path (echo
$PATH) to be sure that it contains the genesis directory (often /usr/genesis).

Interpreter Basics

After the simulator has completed its startup procedure you should see the GENESIS command
prompt "genesis #0 >" indicating that you are now in the GENESIS interpreter (SLI). In the interpreter
you can execute both UNIX shell and GENESIS commands. Try this by typing

ls

This should invoke the UNIX ls command displaying files in the current directory. Typing

listcommands

should produce a list of available GENESIS commands. Note that while there are a large number of
available commands, you will typically use a much smaller subset of these. It is also possible to
combine GENESIS and UNIX shell commands.

GENESIS Tutorial © 2005 David Beeman

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm220 7

Typing

listcommands | more

will "pipe" the output of the GENESIS command listcommands through the UNIX command more, thus
allowing you to page through the listing.

listcommands | more

will "pipe" the output to the printer and

listcommands > myfile

will redirect the output into a file called "myfile".

Basic Objects

The building blocks used to create simulations under GENESIS are referred to as elements. Elements
are created from templates called "objects". The simulator comes with a number of basic objects. To
list the available objects type

listobjects

To get more information on a particular objects type

showobject name

where "name" is replaced by any name from the object list.

The compartment object is commonly used in GENESIS simulations to construct parts of neurons. As
we will be using this object, try the command showobject compartment at this time. There are a few
commonly used objects which are documented more thoroughly with the GENESIS help command. In
order to obtain a detailed description of the equivalent circuit for the compartment object, type

help compartment

 (HINT: You may pipe these commands into more to prevent the output from scrolling off the top of the
screen.) For example.

help compartment | more

Creating Elements

To create an Element from an Object description you use the create command. Try typing the create
command without arguments

create

This gives a usage statement which gives the proper syntax for using this command. Most commands
will produce a usage statement if invoked without arguments, or if followed with the option -usage or -
help.

GENESIS Tutorial © 2005 David Beeman

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm220 8

In the case of the create command the usage statement looks like

usage: create object name -autoindex [object-specific-options]

In this exercise we will create a simple passive compartment. In order to keep track of the many
elements that go into a simulation, each element must be given a name. To create a compartment
with the name soma type

create compartment /soma

Elements are maintained in a hierarchy much like that used to maintain files in the UNIX operating
system. In this case, /soma is a pathname which indicates that the soma is to be placed at the root or
top of the hierarchy.

We will eventually build a fairly realistic neuron called /cell with a soma, dendrites, channels and an
axon. It would be a good idea to organize these components into a hierarchy of elements such as
/cell/soma, /cell/dend, /cell/dend/Ex_channel, and so on. If we do this, we need to create the
appropriate type of element for /cell. GENESIS has a neutral object for this sort of use. An element of
this type is an empty element that performs no actions and is used chiefly as a parent element for a
hierarchy of child elements.

To start the construction of our cell, give the commands

create neutral /cell

create compartment /cell/soma}

As we no longer need our original element /soma, we may delete it with the command delete.

delete /soma

Examining Elements

The commands for maintaining elements within their hierarchy are very much like those used to
maintain files in the UNIX operating system. In that spirit, the commands for moving about within the
GENESIS element hierarchy are similar to their UNIX counterparts. For example, to list the elements
in the current level of the hierarchy use the le (list elements) command

le

You should see several items listed including the newly created cell.

Each element contains data fields which contain the values of parameters and state variables used by
the element. To show the contents of these data fields use the showfield command.

showfield /cell *

This will display the names and contents of the data fields of the "cell". The "*" indicates that you wish
to display all the data fields associated with the element. To display the contents of a particular field,
type

showfield /cell/soma Rm

GENESIS Tutorial © 2005 David Beeman

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm220 9

To display an extended listing of the element contents including a description of the object associated
with the element, type

showfield /cell/soma **

Moving About in the Hierarchy

When working in GENESIS you are always located at a particular element within the hierarchy which
is referred to as the "working element". This location is used as a default for many commands which
require path specifications. For example, the le command used above normally takes a path
argument. When the path argument is omitted the working element is used and thus all elements
located under the working element are listed. To move about in the hierarchy use the ce (change
element) command. To change the current working element to the newly create soma, type

ce /cell/soma

Now you can repeat the show command used above omitting the explicit reference to the /cell/soma
pathname.

showfield *

This should display the contents of the /cell/soma data fields. You may find the current working
element by using the pwe (print working element) command. Try giving the command:

pwe

Note the analogy between these commands and the UNIX commands ls, cd, and pwd. By analogy
with UNIX, GENESIS uses the symbols "." to refer to the working element, and ".." to refer to the
element above it in the hierarchy. Try using these with the le, ce, and showfield commands. Likewise,
GENESIS has pushe and pope commands to correspond to the UNIX pushd and popd commands.
These provide a convenient method of changing to a new working element and returning to the
previous one. Try the sequence of commands

pushe /cell

pwe

pope

pwe

Modifying Elements

The contents of the element data fields can be changed using the setfield command. To set the
transmembrane resistance of your cell type

setfield /cell/soma Rm 10

You can set multiple fields in a single command as in

setfield /cell/soma Cm 2 Em 25 inject 5

GENESIS Tutorial © 2005 David Beeman

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm220 10

Now if you do a showfield command on the element you should see the new values appearing in the
data fields.

setfield /cell/soma *

State variables are automatically updated by the elements when they are "run" during a simulation.
For instance the Vm field is a state variable which, while you can change it, will be updated by the
element automatically, replacing your value.

Running a Simulation

Before running a simulation the elements must be placed in a known initial state. This is done using
the reset command, which should be performed prior to all simulation runs.

reset

If you now show the value of the compartment voltage Vm you will see that it has been reset to the
value given by the parameter Em.

showfield /cell/soma *

To run a simulation use the step command, which causes the simulator to advance a given number of
simulation steps.

step 10

Displaying the Vm field now shows that the simulator actually did something and the value has
changed from its initial value due to the current injection.

showfield /cell/soma Vm

Adding Graphics

Some people find that graphics are more effective than endless columns of numbers in monitoring the
course of a simulation. With that in mind we will attempt to add a graph to the simulation which will
display the voltage trajectory of your cell. Graphics are implemented using graphical objects from the
XODUS library which are manipulated using the same techniques described above. The "form" is the
graphical object which is used as a container for all other graphical items. Thus, before making a
graph we need to make a form to put it in which we will arbitrarily name /data.

create xform /data

You may have noticed that nothing much seemed to happen. By default, forms are hidden when first
created. To reveal the newly created form use the command

xshow /data

GENESIS Tutorial © 2005 David Beeman

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm220 11

An empty box should appear somewhere on your screen. To create a graph in this form with the name
voltage use the command

create xgraph /data/voltage

Note that the graph was created beneath the form in the element hierarchy. This is quite important, as
the hierarchy is used to define the nesting of the displayed graphical elements.

Linking Elements

Now you have a cell and a graph but you need some way of passing information from one to the other.

Inter-element communication within GENESIS is achieved through a system of links called messages.
Messages allow one element to access the data fields of another element. For example to cause the
graph to display the voltage of the cell you must first pass a message from the cell to the graph
indicating that you would like a particular data field to be plotted. This is done using the command

addmsg /cell /data/voltage PLOT Vm *volts *red

The first two arguments give it the source and destination elements. The third argument tells it what
type of message you are sending. In this case the message is a request to plot the contents of the
fourth argument which is the name of the data field in the cell which you wish to be plotted. The last
two arguments give the label and color to be used in plotting this field. You can now run the simulation
and view the results in the graph.

reset

step 100

Note that to plot another field in the same graph, just send another message

addmsg /cell /data/voltage PLOT inject *current *blue

reset

step 100

and you are displaying current and voltage.

Adding Buttons to a Form

The xbutton graphical element is often used to invoke a function when a mouse button is clicked.
Give the command

create xbutton /data/RESET -script reset

This should cause a bar labeled RESET to appear within the "data" form below the "voltage" graph.
When the mouse is moved so that the cursor is within the bar and the left mouse button is clicked, the
function following the argument -script is invoked.

GENESIS Tutorial © 2005 David Beeman

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm220 12

Now add another button to the form with the command

create xbutton /data/RUN -script "step 100"

In this case, the function to be executed has a parameter (the number of steps), so "step 100" must be
enclosed in quotes so that the argument of -script will be treated as a single string.

At this stage, you have a complete GENESIS simulation which may be run by clicking the left mouse
button on the bar labeled RESET and then on the one labeled RUN. To terminate the simulation and
leave GENESIS, type either quit or exit. If you like, you may implement one of these commands with a
button also.

At this time, you should use an editor to create a script containing the GENESIS commands which
were used to construct this simulation. The script should begin with

//genesis

and the filename should have the extension ".g". For example, if the script were named tutorial1.g, you
could create the objects and set up the messages with the GENESIS command

tutorial1

If you have exited GENESIS and are back at the unix prompt, you may run GENESIS and bring up the
simulation with the single command

genesis tutorial1

Making realistic neural compartments

The soma compartment that was simulated in the tutorial1.g script corresponds to the "generic neural
compartment" diagram (Fig. 3) but without the variable ionic conductances Gk that we will add later. As
it is a single isolated compartment, we didn't make use of the axial resistance Ra. The diagram reveals
that the current Iinject flows through Rm to create a potential difference that is in series with Em. The
simulation results show that initially, Vm will equal Em, and the steady state will be reached after a time
given roughly by the time constant for charging the membrane capacitance, RmCm. With the values
used, the time constant was 20.

A lot of the simplicity of the script stems from the fact that the numbers used in the simulation worked
well with the default values of the graph axis scales and the default integration step size used by
GENESIS to integrate the equation for the compartment Vm. In order to make a realistic soma
compartment that we can then link to dendrite compartments and populate with ion channels, we will
need to pick appropriate values for the passive cell parameters Rm, Ra, Cm, and the membrane resting
potential Em.

So far, we haven't said much about the units used to express the quantities Rm, Ra, Cm, Vm, etc. that
appear in the neural compartment diagram (Fig. 3) and the differential equation for Vm (Eq.1).

GENESIS Tutorial © 2005 David Beeman

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm220 13

Figure 3: Circuit diagram for a generic compartment.

 (1)

Equation 1: Differential equation for Vm

Physicists and engineers like to use SI (MKS) units of ohms, farads, volts, and meters for describing
resistance, capacitance, voltage, and length. Neurophysiologists are more likely to prefer kilohms,
microfarads, millivolts, and either centimeters or micrometers. One can use any consistent set of units
with GENESIS, but it is most common to use SI units.

The problem with using any of these units for resistance and capacitance is that Rm, Cm, and Ra will
depend on the dimensions of the section of dendrite that is represented by the neural compartment. In
order to specify parameters that are independent of the cell dimensions, specific units are used. For a
cylindrical compartment, the membrane resistance is inversely proportional to the area of the cylinder,
so we define a specific membrane resistance RM, which has units of ohms·m². The membrane
capacitance is proportional to the area, so it is expressed in terms of a specific membrane capacitance
CM, with units of farads/m². Compartments are connected to each other through their axial resistances
Ra. The axial resistance of a cylindrical compartment is proportional to its length and inversely
proportional to its cross-sectional area. Therefore, we define the specific axial resistance RA to have
units of ohms/m.

For a piece of dendrite or a compartment of length l and diameter d we then have

 (2)

Note the membrane time constant Rm·Cm is also equal to RM·CM, so that it is independent of the
dimensions of the membrane.

WARNING: Many treatments of the passive properties of neural tissue use the symbols Rm, Ra, and
Cm for the specific resistances and capacitance, instead of this notation with RM, RA, and CM. Also,

GENESIS Tutorial © 2005 David Beeman

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm220 14

many textbooks and journal papers define the resistance and capacitance in terms of that for a unit
length of cable having a specified diameter, where Rm = rm/l, Cm = cml, Ra = ral.

Although this notation is convenient and widely used, it obscures the fact that rm and ra depend on the
dendrite diameter. In your reading, you should be aware of the units that are being used.

You can read more about passive properties of dendrites in the Digression on Cable Theory from the
Introduction to Computational Neuroscience lectures.

Our goal is to build a cylindrical soma compartment that has the same physiological properties as
those of the squid giant axon studied by Hodgkin and Huxley, and simulated in the GENESIS "squid"
tutorial in genesis/Scripts/squid. So, we will use these values (in SI units) for the compartment
parameters. However, we will make our soma smaller, with both the length and diameter equal to 30
micrometers.

We will also need to choose an appropriate time step for the numerical solution of the equation for Vm.
With the values of RM and CM that we will use (RM = 0.33333 and CM = 0.01), the membrane time
constant will be 0.003333 seconds. We would then expect our integration time step to be a small
fraction of this. In practice, it turns out that 50 microseconds (0.00005 sec) will be a good value.

You can (and should, at some point) read the section in the GENESIS Reference Manual on Clocks
for further suggestions on choosing a time step. The documentation for the commands setclock and
useclock gives the details of setting the time step.

Tutorial2.g

Chapter 13 of the BoG leads the reader through the process of developing the script tutorial2.g. If you
like, you can run this script from the genesis/Scripts/tutorials directory. You should now examine
tutorial2.g:

//genesis - tutorial2.g - GENESIS Version 2.0

/*===

 A sample script to create a soma-like compartment. SI units are
used.

===*/

float PI = 3.14159

// soma parameters - chosen to be the same as in SQUID (but in SI
// units)

float RM = 0.33333 // specific membrane resistance (ohms m^2)

float CM = 0.01 // specific membrane capacitance (farads/m^2)

GENESIS Tutorial © 2005 David Beeman

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm220 15

float RA = 0.3 // specific axial resistance (ohms m)

float EREST_ACT = -0.07 // resting membrane potential (volts)

float Eleak = EREST_ACT + 0.0106 // membrane leakage potential
(volts)

float ENA = 0.045 // sodium equilibrium potential

float EK = -0.082 // potassium equilibrium potential

// cell dimensions (meters)

float soma_l = 30e-6 // cylinder equivalent to 30 micron sphere

float soma_d = 30e-6

float dt = 0.00005 // simulation time step in sec

setclock 0 {dt} // set the simulation clock

//===============================

// Function Definitions

//===============================

function makecompartment(path, length, dia, Erest)

 str path

 float length, dia, Erest

 float area = length*PI*dia

 float xarea = PI*dia*dia/4

 create compartment {path}

 setfield {path} \

 Em { Erest } \ // volts

 Rm { RM/area } \ // Ohms

 Cm { CM*area } \ // Farads

 Ra { RA*length/xarea } // Ohms

end

function make_Vmgraph

 float vmin = -0.100

 float vmax = 0.05

 float tmax = 0.100 // default simulation time = 100 msec

GENESIS Tutorial © 2005 David Beeman

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm220 16

 create xform /data

 create xgraph /data/voltage

 setfield ^ xmax {tmax} ymin {vmin} ymax {vmax}

 create xbutton /data/RESET -script reset

 create xbutton /data/RUN -script "step "{tmax}" -time"

 create xbutton /data/QUIT -script quit

 xshow /data

end

//===============================

// Main Script

//===============================

create neutral /cell

// create the soma compartment "/cell/soma"

makecompartment /cell/soma {soma_l} {soma_d} {Eleak}

// provide current injection to the soma

setfield /cell/soma inject 0.3e-9 // 0.3 nA injection current

// make the graph to display soma Vm and pass messages to the graph

make_Vmgraph

addmsg /cell/soma /data/voltage PLOT Vm *volts *red

check

reset

There are several features of the GENESIS script language that are introduced here:

• The use of a C-style multiline comment, extending from the second through fourth line.

• Declaration of variables to be used. In this script only floating point variables (float) are used,
but "int" and "str" are also allowed. The declaration and use of variables is explained in the
GENESIS Reference Manual section on Variables.

• The line "setclock 0 {dt}" sets the global simulation clock (clock 0) to the specified time step,
dt. Note the use of curly brackets around the variable name dt. Usually, the value of a variable
or an expression must be evaluated by enclosing it in curly brackets in order to distinguish

GENESIS Tutorial © 2005 David Beeman

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm220 17

between the value represented by the character string (0.00005) and the actual string of
characters "dt". This is particularly true when the expression is to be evaluated as an
argument of a GENESIS command or script language function.

• The use of function declarations for makecompartment and make_Vmgraph, and their use in
the "Main Script" section. GENESIS script language functions are described in the GENESIS
Reference Manual section on Functions.

• The use of a backslash to continue a line in the long setfield command in the
makecompartment function.

• Setting the graph scales, and the use of "^" to denote the element last referenced (in this
example, /data/voltage).

• The use of the "-time" option for the step command with the RUN button, to give the amount of
time to run the simulation, rather than the number of steps. (See the documentation for step.)

Building a cell the easy way

Now that we know how to make a realistic neural compartment, the next steps in creating a realistic
model of a neuron are to:

1. Set the passive membrane parameters (membrane resistance and capacitance, axial
resistance, and membrane resting potential (Rm, Cm, Ra, and Ek) for each of the compartments.

2. Populate the compartments with ionic conductances ("channels"), or other related neural
elements.

3. Link compartments for the soma and dendrites together with appropriate messages to make a
cell.

The Book of GENESIS gradually builds up to the creation of a cell the "hard way" in Chapter 14 and
Chapter 15, describing the element fields that need to be set and the messages that need to be
established between the elements. It then describes an easier way in Chapter 16 that uses the
GENESIS cell reader to perform these three steps.

There is some value to learning the details of the "hard way" in order to understand what the cell
reader is doing, and the messages that it sets up between the elements that make up a cell model.
So, here is a link to a short summary of this material:

Detour: Building a cell without the cell reader.

At some point, it would be useful to follow this link to see how these steps would be done using
separate GENESIS commands. But, for now, let's plunge ahead and create a simple neuron with the
cell reader.

GENESIS Tutorial © 2005 David Beeman

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm220 18

In this part of the tutorial we will use the cell reader to create a simple two-compartment neuron with a
dendrite compartment, a soma, and an axon. The dendrite contains synaptically activated excitatory
and inhibitory channels and the soma contains voltage-activated Hodgkin-Huxley sodium and
potassium channels, plus a spikegen element that acts like the initial part of an axon. This may be
used to provide synaptic input to another cell.

Locate the "GENESIS Tutorials directory" that contains the GENESIS tutorials and "cd" to it in a
terminal window. "ls" will show you that it contains a cells directory, which contains other directories
having various GENESIS cell models. To begin, "cd" to the directory cells/simplecell and run the
simplecell simulation by typing "genesis simplecell". You may vary the injection current (given in
Amperes) from the default value of 0.5 nA, by editing the value in the "Injection" dialog box. NOTE:
after entering a value in a GENESIS dialog box, you must hit the "Enter" key for the value to be
accepted. Experiment with the simulation, and the effect of the RESET and "Overlay" toggle button
after changing the injection current. Notice the "scale" button on the graph lets you change the scales
for graph axes.

SimpleCell.g

Now, it's time to understand the simplecell.g script, which contains only:

//genesis - simplecell.g

/*==

 A sample script to create a neuron containing channels taken from

 hh_tchan.g in the neurokit prototypes library. SI units are used.

==*/

// Create a library of prototype elements to be used by the cell
// reader

include protodefs

float tmax = 0.5 // simulation time in sec

float dt = 0.00005 // simulation time step in sec

setclock 0 {dt} // set the simulation clock

// include the graphics functions

include graphics

//===============================

// Main Script

GENESIS Tutorial © 2005 David Beeman

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm220 19

//===============================

readcell cell.p /cell

// make the control panel

make_control

// make the graph to display soma Vm and pass messages to the graph

make_Vmgraph

addmsg /cell/soma /data/voltage PLOT Vm *volts *red

setfield /control/Injection value 0.5e-9

set_inject /control/Injection // set initial injection from Injection

 dialog

check

reset

The statement "include protodefs" merges in the contents of the protodefs.g file, which is in the current
(cells/simplecell) directory. This file, which we will examine shortly, creates the prototype compartment
and channels, from which the cell reader will construct our cell.

The included file, graphics.g, contains the definition of the functions make_control and make_Vmgraph
that are used to make the control panel and the graph for plotting the soma membrane potential Vm.

cell.p

The cell is constructed with the single command

readcell cell.p /cell

which creates a neutral placeholder element /cell and builds the cell under it, according to the
specifications in the cell parameter file cell.p:

GENESIS Tutorial © 2005 David Beeman

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm220 20

// cell.p - Cell parameter file used in the simplecell tutorial

// Format of file :

// x,y,z,dia are in microns, all other units are SI (Meter Kilogram
// Sec Amp)

// In polar mode 'r' is in microns, theta and phi in degrees

// readcell options start with a '*'

// The format for each compartment parameter line is :

// name parent r theta phi d ch dens ...

// in polar mode, and in cartesian mode :

// name parent x y z d ch dens ...

// For channels, "dens" = maximum conductance per unit area of
// compartment

// For spike elements, "dens" is the spike threshold

// Coordinate mode

*relative

*cartesian

*asymmetric

// Specifying constants

*set_compt_param RM 0.33333

*set_compt_param RA 0.3

*set_compt_param CM 0.01

*set_compt_param EREST_ACT -0.07

// For the soma, use the leakage potential (-0.07 + 0.0106) for
// Em *set_compt_param ELEAK -0.0594

soma none 30 0 0 30 Na_hh_tchan 1200 K_hh_tchan 360 spike 0.0

// The dendrite has no H-H channels, so ELEAK = EREST_ACT
// *set_compt_param ELEAK -0.07

dend soma 100 0 0 2 Ex_channel 0.795775 Inh_channel 0.397888

The comments in the file give a brief description of the format of a cell parameter file, and further
details are given in the documentation for readcell. The readcell options used here specify that
relative cartesian coordinates will be used with asymmetric compartments. (If the option "*symmetric"
had been used, then the cell would be constructed using symcompartment elements).

GENESIS Tutorial © 2005 David Beeman

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm220 21

This means that for lines such as

soma none 30 0 0 30

dend soma 100 0 0 2

the soma, which is the start of the cell and has no parent, has its end at the (x, y, z) coordinates of (30,
0, 0) in micrometers. As the cell starts at (0, 0, 0), this means that the soma has a length of 30
micrometers and a diameter of 30 micrometers. The "dend" section will be connected to its parent, the
soma, through its own axial resistance Ra, with suitable messages established between the two
compartments. As relative coordinates are being used, the end of the dendrite compartment will lie
100 micrometers along the x-axis from the end of of the soma compartment.

With the simplecell simulation running, give these commands to the genesis prompt:

showfield /cell/soma -all

showfield /cell/dend -all

The "-all" option causes the compartment start (x0, y0, z0) and end (x, y, z) coordinates to be
displayed, along with the length and diameter and other compartment fields. Verify that these values
are what you would expect.

For a more interesting example of 9-compartment cell with branching basal dendrites, see the cell
parameter file cells/corticalcells/layer5.p.

In the tutorial2.g script, the specific membrane parameters RM, CM, and RA were declared and given
values. The makecompartment function was used to calculate and set the proper values of the fields
Rm, Cm, and Ra using these parameters and the compartment length and diameter. Here, this is all
done by the cell reader, using the values of RM, RA, and CM that were specified using the
"*set_compt_param" option and the compartment coordinates and diameter. You can verify that this
was correctly done, by using the showfield commands above.

tutorial2.g also defined the resting potential of the compartment EREST_ACT, but set the soma
compartment Em field to a different value, "Eleak = EREST_ACT + 0.0106". Normally, we would
expect to set this field, which represents the "battery" in series with the membrane resistance Rm, to
the value of EREST_ACT. However, Hodgin and Huxley found it necessary to set Em to a leakage
potential Eleak that compensates for current flow through other channels (such as chloride channels)
which were not explicitly taken into account in their model. Eleak is set to a value that results in no net
current flow when the cell is at EREST_ACT. The cell reader takes care of this by not only setting
EREST_ACT to the value specified in the cell parameter file, but allowing the use of another
parameter ELEAK, which if specified, gives an alternate value Em, but allows Vm to be initialized to
EREST_ACT on reset, instead of Em. (For further details of the initializaton of Vm on reset, see the
documentation for compartment.)

Therefore, the cell parameter file above sets ELEAK to EREST_ACT + 0.0106 for the soma, but sets it
to EREST_ACT for the dendrite.

Finally, note the list of channels and their conductance densities that follow the compartment
coordinates and diameter. For the soma, these are the values used by Hodgkin and Huxley for the
squid giant axon, with the sodium channel (Na_hh_tchan) given a maximum conductance of 1200

GENESIS Tutorial © 2005 David Beeman

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm220 22

Siemens per square meter of surface area, and the potassium channel (K_hh_tchan) given a value of
300 S/m2. The cell reader scales these by the surface area to set the "Gbar" fields of the channel
elements, and also sets up the necessary messages between the channels and the compartment that
contains them.

Although the simplecell simulation does not make use of them, the dendrite compartment has been
given excitatory and inhibitory synaptically activated channels, with appropriate conductance densities.
A later section of the tutorial describes how these, and the spike generator element spike that was
created in the soma, can be used when this cell is connected to another in a circuit or network. (If you
want a preview, take a look at the documentation for synchan, spikegen, and the GENESIS Reference
Manual section on Synaptic Connections).

To see the messages that have been set up by the cell reader (plus the PLOT message established
by simplecell.g), give the commands

showmsg /cell/soma

showmsg /cell/dend

Creating channel prototypes

The remaining thing to be explained is the way that we tell the cell reader about the properties of the
elements that the cell parameter file calls Na_hh_tchan, K_hh_tchan, spike, Ex_channel, and
Inh_channel. If you are anxious to go on to connect cells together in a network, you can skip ahead to
the section on Making synaptic connections and return to this part later. However, at some point, you
will need to create these prototype channels.

The cell reader builds the cell by making copies of "prototypes" of the various elements that will be
used, replacing the default values of parameter fields with values taken from the cell descriptor file.
For example, when constructing a soma with several attached dendrite compartments, it will make
multiple copies of a generic compartment prototype and then set the data fields in each compartment
to the appropriate values. Likewise, a cell having Hodgkin-Huxley Na channels in several
compartments will get these channels from copies of the single Na channel prototype, setting the
value of the maximum channel conductance Gbar for each copy, making use of the specified
conductance density and dimensions of the compartment that contains the channel.

The cell reader expects to find this library of prototype elements as a set of subelements of the neutral
element /library. Thus, we need to write a script that will create /library and fill it with a prototype
compartment, one copy of each of the different channel types we will use, and a spike generator.
Although the statements that are needed to set up the prototype library could go into your main
simulation script, it is customary to make a separate script for this, and to then use include to bring it
into the simulation. This script is often called protodefs.g, although you may give it any name that you
like in your own simulations.

GENESIS Tutorial © 2005 David Beeman

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm220 23

protodefs.g

At this point, examine the listing for protodefs.g.

// protodefs.g - Definition of prototype elements for "simplecell"

/* Included files are in genesis/Scripts/neurokit/prototypes */

/* file for standard compartments */

include compartments

// include the definitions for the functions to create H-H tabchannels

include hh_tchan

/* hh_tchan.g assigns values to the global variables EREST_ACT, ENA,
EK, and SOMA_A. The first three will be superseded by values defined
below. The value of SOMA_A set in hh_tchan.g is not relevant, as the
cell reader calculates the compartment area.

*/

EREST_ACT = -0.07 // resting membrane potential (volts)

ENA = 0.045 // sodium equilibrium potential

EK = -0.082 // potassium equilibrium potential

/* file for synaptic channels */

include synchans

/* file which makes a spike generator */

include protospike

// Make a "library element" to hold the prototypes, which will be used
// by the cell reader to add compartments and channels to the cell.

create neutral /library

// We don't want the library to try to calculate anything, so we
// disable it

disable /library

// To ensure that all subsequent elements are made in the library

GENESIS Tutorial © 2005 David Beeman

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm220 24

pushe /library

/* Make a prototype compartment. The internal fields will be set by

 the cell reader, so they do not need to be set here. The

 make_cylind_compartment function is defined in compartments.g.

*/

make_cylind_compartment

/* Functions in hh_tchan.g create prototype H-H tabchannels

 "Na_hh_tchan" and "K_hh_tchan"

*/

make_Na_hh_tchan

make_K_hh_tchan

// Make a prototype excitatory channel, "Ex_channel" - from synchans.g

make_Ex_channel /* synchan with Ek = 0.045, tau1 = tau2 = 3 msec */

// Make a prototype inhibitory channel, "Inh_channel"

make_Inh_channel /* synchan with Ek = -0.082, tau1 = tau2 = 20 msec */

/* Make a spike generator (spikegen) element "spike" - from
protospike.g */

make_spike

pope // Return to the original place in the element tree

Note the use of several statements to include the files compartments.g, hh_tchan.g, synchans.g, and
protospike.g.

These files are not in the cells/simplecell directory, but are found in the
genesis/Scripts/neurokit/prototypes directory. The GENESIS initialization file (.simrc in your home
directory) sets the GENESIS search path (SIMPATH) to include this directory, so that these and many
other files with prototype definitions can be accessed from any directory.

These files contain definitions of some global variables for channel reversal potentials and the like,
plus function definitions that create the prototype elements. For example, hh_tchan.g sets some
default values for the cell resting potential EREST_ACT, the sodium reversal potential ENa, and the
potassium reversal potential EK. It also declares the functions make_Na_hh_tchan and
make_K_hh_tchan to make the Na and K channel elements. The protodefs.g file assigns different

GENESIS Tutorial © 2005 David Beeman

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm220 25

values to these variables after hh_tchan.g is included, but before the functions that create the
prototype channels are called.

Usually the file containing the functions to create prototype channels will have some means of shifting
the voltage scale for activation and time constant curves (minf and tau) by specifying a variable for the
voltage offset in equations that depend on the membrane potential. Often the variable EREST_ACT is
used for this purpose, as it can also represent the nominal resting potential of the cell for which the
active channel models were developed. By using this as a global variable and changing it before
calling the channel creation functions that are defined in the channel files, you can shift these curves.
This can be very useful when you use a channel developed for one cell model in different cell.

WARNING: Note that EREST_ACT is also used in the cell parameter file to give Em and the starting
Vm(initVm). And, if you include more than one file with functions to create channels, these files may
set different values for EREST_ACT or the ionic reversal potentials. If this is the case, you should be
careful to reset these variables to the desired values, after including the file, and before invoking the
channel creation functions defined in that file.

Detour: Creating your own channel models

Creating the graphics

The file graphics.g can be used somewhat blindly, as long as you are happy with the default control
panel and the graph that it creates. After including it, all you need to do is to invoke the make_control
and make_Vmgraph functions and to send appropriate PLOT messages to the /data/voltage xgraph
element.

It is a good idea to keep the commands that involve graphics in a separate file, as we have done here.
If you should later want to modify your simulation to run without graphics, as you might want to do
when making long simulation runs on another networked computer, then you only need to make small
changes to to the main simulation script. This will also allow you to easily add alternate Java-based
user interfaces when GENESIS 3 is available.

In future tutorials, we will build upon the simplecell model scripts to create more detailed cell models.
There is also a much fancier version of this simulation in the cells/simplecell2 directory. This
implements the same model neuron, but provides a fancier graphical interface with controls to allow
pulsed injection current, synaptic input from spike trains, and random Poisson-distributed background
synaptic activation. It also provides user-defined string variables in the main script that you can
change to use with different cell models.

If you need to modify this file for your own customized GUI, refer to the GENESIS Reference Manual
section on the XODUS Graphical Interface, and the links given there for documentation for the
XODUS "widgets" xbutton, xtoggle, xlabel, and xgraph. Chapter 14 of the BoG also explains some of
the XODUS commands that were used to create a similar interface for tutorial3.g, and Chapter 22
gives a very detailed treatment of XODUS.

graphics.g

/*===

GENESIS Tutorial © 2005 David Beeman

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm220 26

 A GENESIS GUI with a simple control panel and graph, with axis
scaling

==*/

include xtools.g // functions to make "scale" buttons, etc.

//===============================

// Function Definitions

//===============================

function step_tmax

 step {tmax} -time

end

function overlaytoggle(widget)

 str widget

 setfield /##[TYPE=xgraph] overlay {getfield {widget} state}

end

//===============================

// Graphics Functions

//===============================

function make_control

 create xform /control [10,50,250,180]

 create xlabel /control/label -hgeom 25 -bg cyan -label "CONTROL \

 PANEL"

 create xbutton /control/RESET -wgeom 33% -script reset

 create xbutton /control/RUN -xgeom 0:RESET -ygeom 0:label –wgeom \

 33% -script step_tmax

 create xbutton /control/QUIT -xgeom 0:RUN -ygeom 0:label -wgeom \

 34% -script quit

 create xdialog /control/Injection -label "Injection (amperes)" \

 -value 0.5e-9 -script "set_inject <widget>"

 create xtoggle /control/overlay -script "overlaytoggle <widget>"

GENESIS Tutorial © 2005 David Beeman

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm220 27

 setfield /control/overlay offlabel "Overlay OFF" onlabel "Overlay \

 ON" state 0

 xshow /control

end

function make_Vmgraph

 float vmin = -0.100

 float vmax = 0.05

 create xform /data [265,50,700,350]

 create xlabel /data/label -hgeom 10% -label "Soma contains Na \

 and K channels"

 create xgraph /data/voltage -hgeom 90% -title "Membrane \

 Potential" -bg white

 setfield ^ XUnits sec YUnits Volts

 setfield ^ xmax {tmax} ymin {vmin} ymax {vmax}

 makegraphscale /data/voltage

 xshow /data

end

function set_inject(dialog)

 str dialog

 setfield /cell/soma inject {getfield {dialog} value}

end

Some of the GENESIS features used in this file, and explained in the documentation links, are:

• The use of a function overlaytoggle, that uses an xtoggle widget to set the overlay field of all
xgraph objects, so that a new graph can be plotted after a reset, without clearing the graph.
This is used with the xtoggle element that is created in make_control, to toggle back and forth
between overlay mode and non-overlay mode.

• The use of the wildcard expression "/##[TYPE=xgraph]" to mean any element in the element
tree that is created from an xgraph object. The wildcard notation is explained in the GENESIS
Reference Manual section on Hierarchical Structure.

• The use of the getfield command to return the value of a field of an xtoggle, xdialog, or any
other element.

• The specification of position and dimensions [x, y, width, height] for xforms.

GENESIS Tutorial © 2005 David Beeman

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm220 28

• The use of various ways of sizing and positioning of widgets, and setting labels and
background colors. You may wish to experiment with these options.

• The use of a xdialog widget with a label, default value string, and function to be executed (the
"-script" argument). Note the use of the shorthand "<widget>" to refer to the widget itself,
which in this case is the xdialog /control/Injection.

• The use of the XUnits and YUnits fields of an xgraph to add labels to graph X and Y axes.

• The use of the function makegraphscale (defined in the included file xtools.g) to create a
"scale" button in the upper left corner of a graph, for changing axis scales.

An exercise (highly recommended):

Build some more cell simulations using the graphics.g file provided here, your own modified version of
simplecell.g, and with the channel prototypes and cell parameter files found in some of the
subdirectories of the cells directory. The corticalcells examples are a good place to start. The traubcell
subdirectory has most of what you need to construct the 1991 Traub hippocampal CA3 region
pyramidal cell model (see also Traub 1991). Each of these subdirectories of cells has a README file
with further information.

For this, it would be best to create your own directory to which you will copy the files that you will
modify for your simulation. For example, assuming that you want to create a subdirectory in your
home directory called newcell and it doesn't already exist, you might do the following from within the
cells subdirectory of the "GENESIS Tutorials" directory:

mkdir ~/newcell

cp simplecell/* ~/newcell

cp corticalcells/* ~/newcell

cd ~/newcell

You can then use your favorite text editor to modify any of these files.

Another exercise

The genesis/Scripts/neurokit/prototypes file yamadachan.g contains a function make_KM_bsg_yka to
generate a Non-inactivating Muscarinic K current. This conductance was used in a model of a bullfrog
stomatogastric ganglion cell, by Yamada, Koch, and Adams (1989).

This slow hyperpolarizing current is responsible for spike frequency adaption, i.e., after a current
injection causes the cell to begin firing, the spiking rate decreases and reaches a steady slower rate,
as in the plot shown below (Fig. 4).

GENESIS Tutorial © 2005 David Beeman

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm220 29

Figure 4: Spike frequency adaption. A current injection causes the cell to begin firing, the spiking rate
decreases and reaches a steady slower rate.

Your task is to add a KM_bsg_yka to the simplecell model. Use the same K reversal potential EK as
used by the K_hh_tchan channel. Chose conductance densities that achieve a result similar to the one
above, when the injection current is 0.5 nA (as with the simplecell simulation). HINT: Keep the
Na_hh_tchan maximum conductance density at its original value of 1200 S/m2, but you will need to
lower the K_hh_tchan maximum conductance considerably in order to compensate for the
hyperpolarization contributed by KM_bsg_yka. If either of these potassium conductances are too
large, the cell will not continue to fire. It will take a careful balance between them to produce the right
result.

I give up -- tell me what conductance densities to use (EXERCISE ANSWER).

Next, we will learn how to add synaptically activated channels and make synaptic connections, in
order to build networks. At some point, you may want to come back and follow the

Detour: Making more realistic cell models

But, let's now move on to the next tutorial section Making synaptic connections so that we can get
started on modeling neural circuits and networks.

Making synaptic connections

Adding synapses and providing synaptic input

We have already added an excitatory and an inhibitory synaptically activated channel to the /cell/dend
compartment, and a spike element to the soma, but haven't yet made any use of them.

GENESIS Tutorial © 2005 David Beeman

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm220 30

Usually, we can treat an axon as a simple delay line for the delivery of spike events that last a single
time step, as shown in Fig. 5. Only if we are interested in understanding the details of axonal
propagation would it be necessary to model the axon as a series of linked compartments.

Figure 5: A threshold detector is used to convert the continuously varying action potentials to spike
events that are propagated to a synapse after an appropriate axonal propagation delay. In GENESIS,
the spikegen object provides the threshold detection, and the synchan object implements the delay.

The properties of an axon are split between two types of GENESIS objects. Spiking class elements (a
spikegen or randomspike) create the spike events, either when Vm crosses a threshold during an
action potential (spikegen), or as a random series of events generated at a specified average rate
(randomspike). These send SPIKE messages to a synchannel class element (synchan, hebbsynchan,
or facsynchan), which contains fields for the propagation delays and synaptic weighting for each
synaptic connection.

For example, to send somatic action potentials in cell1 to a synchan element "Ex_channel" in the
dendrite compartment of cell2, you might use:

create spikegen /cell1/soma/spike

setfield /cell1/soma/spike thresh 0 abs_refract 0.005 output_amp 1

addmsg /cell1/soma /cell1/soma/spike INPUT Vm

addmsg /cell1/soma/spike /cell2/dend/Ex_channel SPIKE

setfield /cell2/dend/Ex_channel synapse[0].weight 10 \

 synapse[0].delay 0.005

In this example, a spike is generated by the spikegen when the soma Vm exceeds the threshold value
of 0. The absolute refractory period has been set to 0.005 (5 msec) in order to prevent multiple spikes
from being generated during the time that Vm is above threshold. Normally, the field abs_refract will
be set to something greater than the maximum width of the action potential at threshold, and less than
the minimum expected interspike interval. Each time a new SPIKE message is added, it creates a new
synapse within the synchan. Here, this synaptic connection is labeled as "synapse[0]", as it was the
first (of possibly several) to be established with the SPIKE message.

In order to understand more about the use of these synaptically activated channels, you will need to
read the documentation for Synaptic Connections in the GENESIS Reference Manual, and the
documentation for synchan, spikegen, and randomspike. It will also be helpful to look at

GENESIS Tutorial © 2005 David Beeman

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm220 31

genesis/Scripts/neurokit/prototypes/synchans.g in order to understand the properties of the channels
Ex_channel and Inh_channel in /cell/dend. The Advanced Tutorial on "Simulating in vivo-like synaptic
input patterns in multicompartmental models" (Edgerton 2005, this volume) describes how realistic
spike trains can be generated as probability distributions, or read from experimental data.

Then, try this simple exercise:

Modify the simplecell.g script to add a randomspike element with an average spike rate of 200 spikes
per second. Connect it to /cell/dend/Ex_channel, and set the soma current injection to zero. If you
would like to play with XODUS graphics some more, plot the Ex_channel conductance Gk on another
graph.

If you get stuck, look at tutorial4.g ("the hard way") or tutorial5.g (with readcell). In addition to the
random spike input, these scripts illustrate the coupling of a cell's spike output to a synchan, by
providing a feedback connection from the cell to itself. Chapter 15 of the BoG gives a detailed
description of the steps in the construction of tutorial4.g.

Once you feel that you are ready, continue to the next section of this tutorial. This provides a more
realistic exercise that connects two cells to each other to form a pattern generator circuit.

Building small networks and circuits

The goal of this exercise is to create a simple network of two cells that fire in alternate bursts. This will
be made from two cells derived from the one created in the simplecell simulation, called /cell1 and
/cell2. After you feel that you understand simplecell.g and its included files, and have studied the
documentation on the use of the synchan and spikegen objects, copy the cells/simplecell files into a
directory of your own. Then, make the changes necessary to create a second cell with no current
injection, and plot its Vm on the graph in a different color. Of course, the plot will be a flat line, as it is
receiving no stimulus.

Then, use what you have learned about synaptic connections to connect the spike output of cell1 to
the excitatory synchan of cell2, and the spike output of cell2 to the inhibitory input of cell1. Use an
axonal propagation delay of 0.005 seconds for each connection. Finally, experiment with the synaptic
weights for each synapse until you can achieve a pattern of alternate bursts of action potentials. To
make it easy to change the weights, you may wish to add dialog boxes for entering weights to the
control panel.

This approach may also be used to create larger networks. However, GENESIS has a number of
commands that are intended specifically to create large arrays of cells and to connect them into a
network, with just a few lines of scripting code. That is the subject of the next section.

Creating large networks with GENESIS

Now that we know how to make models of single neurons, and to make simple circuits of synaptically-
connected neurons, it's time to get the next step in "modeling the brain" -- creating large networks of
biologically realistic neurons, connected according to our best knowledge from physiology.

GENESIS Tutorial © 2005 David Beeman

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm220 32

The procedure for constructing of large networks with GENESIS is covered in BoG Chapter 18. This
chapter gives detailed descriptions for using the various options of the network creation commands
that are summarized in the GENESIS Reference Manual section on Synaptic Connections. The WAM-
BAMM 2005 Advanced Tutorial on Constructing Large-scale Network Models at http://www.wam-
bamm.org/WB05/Tutorials provides some good advice on the issues encountered, and describes the
process of constructing biologically realistic large networks of neurons. It uses examples taken from
an improved "next-generation" model of the piriform cortex.

The chapter in the BoG uses examples from the venerable genesis/Scripts/orient_tut simulation, a
very simple model of orientation selectivity, involving two layers of cells.

This tutorial uses a somewhat simpler example, consisting of a grid of simplified neocortical regular
spiking pyramidal cells, each one coupled with excitory synaptic connections to its four nearest
neighbors. This might model the connections due to local association fibers in a cortical network. The
example simulation, in the networks/RSnet directory, was designed to be easily modified to allow you
to use other cell models, implement other patterns of connectivity, or to augment with a population of
inhibitory interneurons and the several other types of connections in a cortical network.

You may examine the cell model itself, and explore its response to different types of inputs by running
and examining the scripts in the cells/RScell directory. This is a very simple one-compartment model
that, like the exercise in “Building a cell the easy way”, uses a Muscarinic potassium current (KM) in
order to achieve spike frequency adaption. This model, based on a paper and simulation by Destexhe
et al. (2001), uses channels that give more realistic firing patterns than those in our exercise. The
simplicity of this cell model allows our example network of 625 neurons to run fairly quickly.

But, it is important to note that single-compartment models with only these three ionic conductances
have limitations. Although the KM current may play a role in spike frequency adaption of cortical
pyramidal cells, the behavior of these cells is largely determined by calcium currents and at least two
varieties of calcium-activated potassium currents. You may explore some more realistic cortical
pyramidal cell models by running the simulations in the cells/corticalcells directory. The
genesis/Scripts/traub91 tutorial demonstrates the effects of these currents in burst-firing hippocampal
pyramidal cells. For more on this subject, you can follow the detour:

Detour: Making more realistic cell models

The example simulation

Before we dissect the RSnet.g script, let's look at the simulation and its GUI. As with the scripts for
RScell and simplecell2, the main script and the GUI (in graphics.g) were designed as fairly general
templates that you can modify to experiment with your own network and cell models. It can be
customized for another cell by changing strings that are defined in the main script.

GENESIS Tutorial © 2005 David Beeman

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm220 33

When you run RSnet.g with the default parameters, you will see something like the display shown in
Fig. 6:

Figure 6: The RSnet simulation control panel (left) and the plot of membrane potential of cells at the
center, right edge, and lower left corner of the network (middle). The display at the right shows the
membrane potential in each cell of the network.

The CONTROL PANEL allows injection pulses to be applied to a selected cell in the network and/or
random synaptic activation to be applied to each cell. The latter is done by setting the 'Frequency'
dialog box to a non-zero value. This sets the frequency field of each synchan to the given value. The
injection may be turned on and off by clicking on the 'Current Injection ON/OFF' toggle. Under
'Connection Parameters', 'synchan gmax' is used to set the gmax field of the synchan of each cell. The
'Weight' parameter acts as a multiplier of gmax for connections to the cells, but not for the random
activation. Thus, the amplitude of the of the random synaptic input can be increased or decreased
relative to the network synaptic input by appropriate scaling of 'synchan gmax' and 'Weight'.

The 'Delay' dialog is for setting the fixed axonal delay of each synchan to the same value. Comments
in RSnet.g explain how to use a conduction velocity instead, to scale the delay according to the
distance between cells.

You can explore the connections that are made by invoking the 'synapse_info' function at the genesis
prompt. This function is defined, with further explanation, in the file synapseinfo.g, which is included by
RSnet.g. For example,

genesis #5 > synapse_info /network/cell[312]/soma/Ex_channel

synapse[0] : src = /network/cell[287]/soma/spike weight =10 \

 delay=0.002

synapse[1] : src = /network/cell[311]/soma/spike weight =10 \

 delay=0.002

synapse[2] : src = /network/cell[313]/soma/spike weight =10 \

GENESIS Tutorial © 2005 David Beeman

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm220 34

 delay=0.002

synapse[3] : src = /network/cell[337]/soma/spike weight =10 \

 delay=0.002

The 'Membrane Potenial' plot shows Vm for the center cell soma, and that for ones on the right edge
and lower left corner. Each of these additional plots is displaced vertically by 0.5 V from the others, for
easier viewing.

The function make_netview, defined in graphics.g, illustrates the use of the xview widget to display the
Vm of each cell on the grid, using a cold to hot colorscale. To speed up the simulation somewhat, the
line that invokes this function may be commented out.

Constructing the network

There are five steps to constructing the network. Each of these is described in a corresponding
commented section of RSnet.g.

1. Create any prototype channels, compartments, etc. that will be used to build the cells.

2. Create a prototype cell, coupled to an excitatory synchan and a spikegen.

3. Use the createmap command to copy the prototype into a 2D array of cells.

4. Use the planarconnect command to connect each cell's spikegen to synchans on the four
nearest neighbors.

5. Use the planardelay and planarweight commands to provide appropriate axonal delays and
synaptic weights to the connections.

Here are the statements used in RSnet.g for each of these steps:

Step 1: Assemble the components to build the prototype cell under the neutral element /library, all of
this is done in the protodefs.g file, which is similar to those used in making the prototypes used for
single cell models:

include protodefs.g // This creates /library with the cell components

Step 2: Create the prototype cell specified in RScell.p, using readcell. Then, set the maximal
conductance of the excitatory synchan in the appropriate compartment, and the threshold and
absolute refractory period of the spikegen that is attached to the soma.

readcell RScell.p /library/cell

setfield /library/cell/soma/Ex_channel gmax {gmax}

setfield /library/cell/soma/spike thresh 0 abs_refract 0.004 \

 output_amp 1

GENESIS Tutorial © 2005 David Beeman

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm220 35

In this case, the synchan is in the soma compartment, with the maximal conductance specified in the
variable 'gmax'. A spike will be generated when Vm exceeds a voltage of zero, unless one has
previously been generated within the last 4 msec.

Step 3: Make a two-dimensional array of cells with copies of /library/cell.

createmap /library/cell /network {NX} {NY} -delta {SEP_X} {SEP_Y}

The usage of the createmap command is

createmap source dest Nx Ny -delta dx dy [-origin x y]

There will be NX cells along the x-direction, separated by SEP_X, and NY cells along the y-direction,
separated by SEP_Y. The default origin is (0, 0). This will be the coordinates of cell[0]. The last cell,
cell[{NX*NY-1}], will be at (NX*SEP_X -1, NY*SEP_Y-1).

Step 4: Now connect them up, using the planarconnect command. This command establishes synaptic
connections between groups of elements based on the x-y positions of the elements. It does this by
adding SPIKE messages between source and destination elements, using a large number of options
to specify just which ones are to be included. Although this makes the syntax somewhat complex, it
allows a wide variety of patterns of connections. The usage is of the form

 planarconnect source-path destination-path

 [-relative]

 [-sourcemask {box,ellipse} xmin ymin xmax ymax]

 [-sourcehole {box,ellipse} xmin ymin xmax ymax]

 [-destmask {box,ellipse} xmin ymin xmax ymax]

 [-desthole {box,ellipse} xmin ymin xmax ymax]

 [-probability p]

These options are described in more detail in Chapter 18 of the BoG, and the documentation for
planarconnect.

In this simulation, we want to connect each source spike generator to the excitatory synchans on the
four nearest neighbors. To do this, we define the sourcemask to be a rectangle (box) with a very large
range (-1 to +1 meters!), so that every cell in the network will be treated as a source. We want the
destination, relative to the source to be an ellipse (or circle) that is large enough to include the four
neighbors. It is generally a good idea to set the destmask ellipse axes or box size somewhat higher
than the cell spacing, to be sure that the cells are included. Although this isn't a problem with our
single-compartment cell, it can be an issue if the destination synapses are located in a distal dendrite
compartment that is displaced by some amount from the cell origin. We also want to define a
"destination hole" region that excludes the source cell, so that it doesn't connect to itself. This is
implementented in RSnet.g with the statement:

GENESIS Tutorial © 2005 David Beeman

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm220 36

planarconnect /network/cell[]/soma/spike
/network/cell[]/soma/Ex_channel \

-relative \ // Destination coordinates are measured relative to source

-sourcemask box -1 -1 1 1 \ // Larger than source area -> all cells

-destmask ellipse 0 0 {SEP_X*1.2} {SEP_Y*1.2} \

-desthole box {-SEP_X*0.5} {-SEP_Y*0.5} {SEP_X*0.5} {SEP_Y*0.5} \

-probability 1.1 // set probability > 1 to connect to all in destmask

Note the use of the wildcard notation 'cell[]' to indicate all indices of the cell objects. Here, the
'desthole' could just as well have been an ellipse. The variables SEP_X and SEP_Y had previously
been set to the desired spacing between cells, 0.001 meters. To connect to nearest neighbors and the
4 diagonal neighbors, we would use a box for the destmask:

-destmask box {-SEP_X*1.01} {-SEP_Y*1.01} {SEP_X*1.01} {SEP_Y*1.01}

For all-to-all connections with a 10% probability, set both the sourcemask and the destmask to have a
range much greater than NX*SEP_X using options

 -destmask box -1 -1 1 1

 -probability 0.1

Step 5: Set the axonal propagation delay and weight fields of the target synchan synapses for all
spikegens, to the values previously defined for 'prop_delay' and 'syn_weight':

planardelay /network/cell[]/soma/spike -fixed {prop_delay}

planarweight /network/cell[]/soma/spike -fixed {syn_weight}

To scale the delays according to distance instead of using a fixed delay, use

planardelay /network/cell[]/soma/spike -radial {cond_vel}

and change the dialogs in graphics.g to set 'cond_vel'. This would be appropriate when connections
are made to more distant cells.

Other options described in the documentation for planardelay and planarweight allow some
randomized variations in the delay and weight, to make a more realistic simulation of a biological
network. There are also three-dimensional equivalents to planarconnect, planardelay, and
planarweight, called volumeconnect, volumedelay, and volumeweight.

Some other things to try

The example script in genesis/Scripts/examples/fileconnect gives an example of reading in a network
connection matrix from a file with the fileconnect command.

GENESIS Tutorial © 2005 David Beeman

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm220 37

If you would like to experiment with models having spike timing dependent plasticity, see the
documentation for the hebbsynchan and facsynchan objects, and the examples in the GENESIS
Scripts/examples directory.

More realistic cortical cell models tend to have a more pronounced hyperpolarization after the action
potentials and a "more absolute" refractory period. This makes it possible to have propagating rings of
activation generated by injection pulses, rather than continuous firing, as in this model. (For example,
see Kudela et al. 1999). Modify the RSnet simulation to use the more detailed BDK5cell neocortical
pyramidal model from the cells/corticalcells directory, and see if you can produce this effect. What
effect does the propagation delay have on the waves?

Another 'exercise for the reader' would be to use the GENESIS parameter search routines to vary the
RScell parameters, in order to create a cell that more closely duplicates the current injection behavior
seen in a specific set of experimental data. Then compare the two models when used in a network.

Of course, a realistic cortical network will have a large number of inhibitory connections, mediated by
interneurons that receive excitatory inputs and then make inhibitory connections to pyramidal cells.
The lack of inhibition in this example network is responsible for the fact that, once a wave of excitation
begins to propagate, the cells are firing near their maximum frequency and, as seen in the 'Membrane
Potenial' plot, the amplitude of the action potentials is somewhat reduced because of this
overstimulation. Inhibitory interneurons are generally of the "Fast Spiking" category, with little or no
spike frequency adaptation, such as the simplecell model that we examined previously. Try adding a
layer of these cells to the network, and make suitable excitatory connections to them from the RScells,
and connections from them to inhibitory synchans in the RScells. For suggestions on possible "wiring
diagrams" to use, see Douglas and Martin (1989), or Shepherd (1990).

What next?

Now you have the tools to begin "modeling the brain". The last section of this tutorial points you
towards some information about other useful GENESIS features that we haven't yet discussed.

Where do we go from here?

Here are some suggestions and resources for learning more advanced GENESIS programming
techniques.

Using implicit numerical methods

The default integration method (exponential Euler) is fine for simple models with just a few
compartments. Models with many compartments should use an implicit method (e.g. Crank-Nicholson)
with the Hines algorithm in order to avoid numerical instabilities. This is implemented, along with other
speedups, in the GENESIS hsolve object. This is covered in BoG Chapter 20 and the GENESIS
documentation for hsolve. For example scripts, see genesis/Scripts/examples/hines for examples.

GENESIS Tutorial © 2005 David Beeman

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm220 38

Spike train objects in GENESIS

To understand single neuron computation it is desirable that realistic input patterns be given to model
neurons in the study of the input-output function. Spike train objects can be used to generate input
patterns in place of a full network model, which is often not available. Other GENESIS objects can be
used to generate histograms of cross-correlations, auto-correlations, interspike intervals, and others.
The Advanced Tutorial on Simulating in vivo-like synaptic input patterns in multicompartmental models
(Edgerton 2005, this volume) describes how realistic input patterns can be given to model neurons,
using the tools available in GENESIS.

Using GENESIS on parallel computers

Parallel GENESIS (PGENESIS) is an extension of GENESIS for use on parallel computers and
networks of workstations. It is useful for simulations that must be run many times independently, such
as parameter searching, and is used for large scale models that can benefit from the speed
advantages of parallelism, especially large network models. The Advanced Tutorial on Parallel
GENESIS (Hood 2005, this volume) presents in-depth example scripts, and discusses topics such as
efficient network partitioning, synchronization issues, parallel I/O, parallel parameter searching, load
balancing, scaling behavior, and debugging strategies. PGENESIS is also covered in considerable
detail in BoG Chapter 21.

Other examples and GENESIS features

For performing parameter searches to "tune" a model, see genesis/Scripts/param, and the
documentation for the GENESIS Parameter Search Library given in the GENESIS Reference Manual.
The Advanced Tutorial on Parameter Searching Tools in GENESIS at http://www.wam-
bamm.org/WB05/Tutorials gives a good overview of parameter searching and a discussion of the
issues involved, suggestions, hints, and pitfalls.

A demonstration of the use of GENESIS for modeling biochemical reactions such as occur in
biochemical signaling pathways can be found in genesis/Scripts/kinetikit, and in the Advanced Tutorial
on Modeling Calcium and Biochemical Reactions (Blackwell 2005, this volume). BoG Chapter 10
provides an introduction to the biochemistry involved, and a tutorial on Kinetikit and the GENESIS
kinetics library.

If you need to create your own new GENESIS objects and commands, see the documentation on
Customizing GENESIS in the GENESIS Reference Manual.

The genesis/Scripts/examples directory has examples of other genesis capabilities such as Hebbian
and facilitating synapses, Markovian channels, Ca diffusion in spines, and various types of device
objects for input and output, or for applying stimuli to model neurons.

For a summary of all the objects that are available in GENESIS, see the Objects section in the
GENESIS Reference Manual. To simply see a list of available objects, type "listobjects" from within
GENESIS. To see a list of commands, type "listcommands".

GENESIS Tutorial © 2005 David Beeman

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm220 39

Appendix: Detours

Detour 1: Building a cell without the cell reader

Chapter 14 of the BoG develops the script tutorial3.g to add Hodgkin-Huxley Na and K channels to the
single soma compartment that was created in tutorial2.g. The newer version newtutorial3.g is similar,
but uses the preferred tabchannel object.

In either case, the channel is created by calling a function in an included file, as described later in the
"Building a cell the easy way" tutorial. However, instead of using the cell reader to put the channels in
the right place in the element hierarchy and to connect them to the soma, the scripts use statements
like:

// Create two channels, "/cell/soma/Na_squid_hh" and
"/cell/soma/K_squid_hh"

pushe /cell/soma

make_Na_hh_tchan

make_K_hh_tchan

pope

// The soma needs to know the value of the channel conductance

// and equilibrium potential in order to calculate the current

// through the channel. The channel calculates its conductance

// using the current value of the soma membrane potential.

addmsg /cell/soma/Na_hh_tchan /cell/soma CHANNEL Gk Ek

addmsg /cell/soma /cell/soma/Na_hh_tchan VOLTAGE Vm

addmsg /cell/soma/K_hh_tchan /cell/soma CHANNEL Gk Ek

addmsg /cell/soma /cell/soma/K_hh_tchan VOLTAGE Vm

In tutorial4.g, developed in BoG Chapter 15, a dendrite compartment is created, and then connected
to the soma with messages illustrated in Fig. A1, and the GENESIS statements

addmsg /cell/dend /cell/soma RAXIAL Ra previous_state

addmsg /cell/soma /cell/dend AXIAL previous_state

Figure A1: The messages and GENESIS commands that couple adjacent neural compartments. These
allow the simulator to calculate the current flow between compartments.

GENESIS Tutorial © 2005 David Beeman

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm220 40

In the first message, the dendrite compartment is linked to the soma with a message of the type
RAXIAL, and a message link is established whereby two value fields, Ra and previous_state, will be
sent from the dendrite to the soma at each simulation step. This allows the soma to calculate the
current entering from the dendrite compartment. The previous_state field gives the value of the
membrane potential at the previous integration step. We use this field rather than Vm because we
want each compartment to update its data fields using data from the previous simulation step.

This establishes the information flow from the dendrite to the soma. In the reverse direction, the
dendrite needs to receive the value of the soma's previous membrane potential in order to update its
own state. (The dendrite already knows its own axial resistance to the soma, so the AXIAL message
need not include information regarding axial resistance.)

The section of this tutorial on Making synaptic connections describes the spike generator that the cell
reader adds to the soma. In tutorial4.g, this is accomplished with the statements:

// add a spike generator to the soma

create spikegen /cell/soma/spike

setfield /cell/soma/spike thresh 0 abs_refract 0.010 output_amp 1

/* use the soma membrane potential to drive the spike generator */

addmsg /cell/soma {path}/soma/spike INPUT Vm

The use of the spikegen object is described in the GENESIS Reference Manual section on Synaptic
Connections and in the documentation for the spikegen object.

Detour 2: Creating and modifying channel models

You can find prototype definitions for many specific types of channels in the
genesis/Scripts/neurokit/prototypes directory. The files in this directory, LIST and LIST.description,
summarize the ones that are available.

Many of these prototype files make use of the variable EREST_ACT, which can be changed to
another value, in order to shift the voltage dependence of the steady state activation and time constant
up or down. For example, hh_tchan.g was designed for a mitral cell simulation with a resting potential
of -0.06 volts. The simplecell simulation changed this to -0.07 volts for use in a cell that has a resting
potential of -0.07 volts.

At some point, you may need to make more extensive changes in these scripts, or write your own. As
a start, we will examine the K channel that is implemented with a tabchannel object by the
make_K_hh_tchan function in hh_tchan.g. Older GENESIS simulations, such as tutorial3.g, implement
this type of channel with the hh_channel object. We recommend that you use the faster and more
versatile tabchannel, instead. genesis/Scripts/tutorials/newtutorial3.g shows how to use tabchannels
instead of the hh_channels that are used in tutorial3.g.

The basic equations that determine the conductance of the K channel in the squid giant axon are:

GENESIS Tutorial © 2005 David Beeman

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm220 41

 (3)

The simulator will solve the equation for dn/dt, so it is only necessary to specify the maximum
conductance, represented by the field Gbar in the tabchannel object, the exponents for up to three
gates (of which we only have one, n), and tables to represent the voltage dependence of the last two
equations for the rate variables alpha and beta.

The relevant part of hh_tchan.g is

str chanpath = "K_hh_tchan"

create tabchannel {chanpath}

setfield ^ Ek {EK} Gbar {360.0*SOMA_A} Ik 0 Gk 0 \

Xpower 4 Ypower 0 Zpower 0

setupalpha {chanpath} X {10e3*(0.01 + EREST_ACT)} -10.0e3 \

 -1.0 {-1.0*(0.01 + EREST_ACT)} -0.01 125.0 0.0 0.0 \

 {-1.0*EREST_ACT} 80.0e-3

This sets the reversal potential Ek to the value previously assigned to the variable Ek, and the
exponent for the n gate (represented by the X gate field of the tabchannel) to 4. As there is no
inactivation or other gate, the exponents for the Y and Z gates are set to 0 (the default). Gbar will
normally be set by the cell reader, but it is given the Hodgkin-Huxley value of 360 S/m2 times the soma
area, in case it is used without the cell reader, with an appropriate value of SOMA_A. Setting Ik and
Gk is not really necessary, as they will be recalculated by the simulator.

The function setupalpha uses a generalized version of the Hodgkin-Huxley rate variables α and β,
namely (A + B*Vm)/(C + exp((Vm + D)/F)), in order to set up the tabchannel tables. The 10
arguments correspond to the A, B, C, D, and F parameters for α and for β. A similar function,
setuptau, allows this form to represent the voltage-dependent activation time constant and steady
state activation, instead. A large percentage of published voltage-dependent Hodgkin-Huxley type
channel models fit this general form. For the others, one has to fill the tables with either an equation
evaluated in a loop, or a set of experimentally measured values. The documentation for tabchannel
gives the details. It would also be useful to look at the documentation for setupalpha, setuptau,
tweakalpha, and tweaktau.

Chapter 19 of the BoG covers the use of tabchannels to make calcium-dependent and other types of
channels, using examples from the traub91chan.g and ASTchan.g prototype files. These files are
extensively commented, and illustrate many of the ways to use a tabchannel. For Ca-dependent
channels, be sure to read the documentation for the Ca_concen object.

GENESIS Tutorial © 2005 David Beeman

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm220 42

Detour 3: Making more realistic (cortical) cell models

Why bother?

Jim Bower has discussed the value of structurally realistic modeling in his introductory remarks on
WAM-BAMM and the modeling philosophy behind the GENESIS approach to modeling in: "Looking for
Newton: Realistic Modeling in Modern Biology" (Bower 2005, this volume). You can also read his
thoughts on choosing the level of detail to use in modeling in BoG Chapter 11.

The simple cell model that we have been using so far, described in Building a cell the easy way, fires
at a steady rate, with equal intervals between spikes. With the addition of a non-inactivating
muscarinic potassium current, it was possible to produce a non-uniform firing pattern with spike
frequency adaptation. The RScell simulation in the cells/RScell directory is another simple one-
compartment model that has a somewhat more realistic firing pattern. We might ask, how important is
it to accurately reproduce the firing pattern of a typical pyramidal cell when picking a cell model to use
in a cortical network? What is the effect of the spike latency and initial interspike interval (ISI) vs. the
final ISI in determining the behavior of a network of neurons that display spike frequency adaptation?
Is the RScell model good enough to use in a realistic network model?

Figure A2: Spike frequency adaptation, showing the latency to the first spike T0, and increasing time
intervals between spikes.

Current clamp experiments on neocortical pyramidal cells often show results similar to the simulation
results shown in Fig. A2 (generated from the detailed BDK5cell simulation in the cells/corticalcells
directory). Is it necessary that a model neuron used in a large network accurately fit the timing of these
action potentials? Or will the large variation in properties of individual neurons somehow "wash out"
these details in the network, and allow us to use much simpler models? This is still an open question
that may be answered by further modeling studies. However, there are indications that this variable
spike timing can significantly affect network behavior.

Here T0 is the spike latency, or time between the application of the injection pulse and the first spike.
Under conditions of low excitation, this could act as an additional propagation delay, and affect the
behavior of the network. The increasing interspike intervals T1 - T5 can also affect the behavior of the
network. Under conditions of high excitation, when the neuron is firing continuously, the later ones will
be more relevant than the early ones.

GENESIS Tutorial © 2005 David Beeman

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm220 43

Spike frequency adaption may also be used as a mechanism for processing behaviorally relevant
stimuli in the presence of many other sources of synaptic input. For example, Benda et al. (2005) have
presented evidence that spike frequency adaption is used as a high pass filter to separate transient
signals from slower oscillatory signals in the electrosensory system of weakly electric fish.

Building the model

The process of building a biologically realistic compartmental model of a neuron involves three steps:

1. Build a suitably realistic passive cell model, without the variable conductances. This subject is
treated briefly in the Introduction to Realistic Neural Modeling section on Constructing the
passive cell (Beeman 2005), and in detail in the Advanced Tutorial on Realistic Single Cell
Modeling (Jaeger 2005, this volume).

2. Add voltage and/or calcium activated conductances. See BoG Chapter 7 for an overview of
the various types of ionic conductances, such as calcium conductances, calcium-activated
potassium conductances, and inactivating potassium conductances, and how they affect firing
properties

3. Tune the model to better fit passive properties and channel parameters that are known only
approximately from experiment. Chapter 7 of the BoG describes how the cell and channel
editing features of Neurokit may be used to perform manual parameter searches. The
GENESIS Reference Manual section on the GENESIS Parameter Search Library and the
example scripts in genesis/Scripts/param describe powerful methods for performing
automated parameter searches in GENESIS. The Advanced Tutorial on Parameter Searching
Tools in GENESIS at http://www.wam-bamm.org/WB05/Tutorials gives a good overview of
parameter searching and a discussion of the issues involved, suggestions, hints, and pitfalls.
Also see Vanier and Bower (1999).

The Advanced Tutorial on Realistic Single Cell Modeling (Jaeger 2005, this volume) examines the
complete process of constructing a structurally realistic neuron model, using specific examples of
modeling cerebellar neurons.

GENESIS Tutorial © 2005 David Beeman

 http//:www.brains-minds-media.org November 2005, Vol.1 | bmm220 44

References

Beeman D (2005). Introduction to Realistic Neural Modeling. Brains, Minds & Media, this volume.

Benda J, Longtin A and Maler L (2005). Spike-frequency adaptation separates transient
communication signals from background oscillations, J. Neurosci. 25: 2312-2321

Blackwell KT (2005). Modeling Calcium and Biochemical Reactions. Brains, Minds And Media, this
volume.

Bower JM and Beeman D (1998). The Book of GENESIS: Exploring Realistic Neural Models with the
GEneral NEural SImulation System, 2nd Edition, Springer-Verlag, New York.

Bower JM (2005). Looking for Newton: Realistic Modeling in Modern Biology. Brains, Minds and
Media, Vol. 1, this volume.

Destexhe, A., Rudolph, M., Fellous, J. M. and Sejnowski, T. J. Fluctuating synaptic conductances
recreate in-vivo-like activity in neocortical neurons. Neuroscience 107: 13-24 (2001).

Douglas RJ, Martin KAC, and Whitteridge D (1989). A canonical microcircuit for neocortex. Neural
Computation 1: 480-488.

Edgerton J (2005). Simulating in vivo-like synaptic input patterns in multicompartmental models.
Brains, Minds and Media, this volume.

Hood G (2005). Using P-GENESIS for Parallel Simulation of GENESIS Models: A Brief Overview.
Brains, Minds and Media, this volume.

Jaeger D (2005). Realistic Single Cell Modeling. Brains, Minds and Media, this volume.

Kudela P, Franaszczuk PJ, and Bergey GK (1999). Model of the propagation of synchronous firing in a
reduced neuron network. Neurocomputing 25-27: 411-418.

Koch C and Segev I (eds.) (1998), Methods in Neuronal Modeling, 2nd Edition, MIT Press, Cambridge,
MA.

Shepherd, GM (1990). The Synaptic Organization of the Brain, 3rd edition, Oxford University Press,
NY.

Traub RD, Wong RK, Miles R, and Michelson H (1991). A model of a CA3 hippocampal pyramidal
neuron incorporating voltage-clamp data on intrinsic conductances, J. Neurophysiology, 66: 635-50.

Vanier, MC and Bower, JM (1999). A Comparative Survey of Automated Parameter-Search Methods
for Compartmental Neural Models. J. Comput. Neurosci. 7: 149-171.

Yamada WM, Koch C, and Adams PR (1989). Multiple channels and calcium dynamics, in Koch C
and Segev I (eds.): Methods in Neuronal Modeling, 1st edition, MIT Press.

