

The IDA & LIDA Models

Stan Franklin

Computer Science Division & Institute for Intelligent Systems
The University of Memphis

IDA: an Intelligent Distribution Agent

Dialogue with sailors
Read personnel data
Check job requisition lists
Enforce Navy policies
Choose jobs to offer members
Negotiate with them about jobs

Who's IDA

- Autonomous software agent
 - Environment—real world (computer, Java VM, network)
 - Senses—strings of characters
 - Actions—natural language email, many internal actions
 - Drives—to find and negotiate new jobs for sailors
- Supported by the US Navy
- Computational IDA
 - Complete, up and running
 - Tested, demonstrated, approved by the Navy

The IDA Model

- Conceptual model of cognition
- Computational model plus additional designed but unimplemented cognitive processes
- A general model such as SOAR, Act-R, C&I
- Models a broad swath of cognitive functions
- A functional integrative theory (FIT), producing empirically based, qualitative hypotheses about how minds work

The IDA Model's Cognitive Functions

- Perception
- Working memory
- Episodic memory
- Long-term memory
- Consciousness
- Action selection
- Emotion

- Deliberation
- Volition
- Metacognition
- Automization
- Non-routine problem solving
- Language generation and understanding

IDA's Architecture

Cognitive Cycles

 Every autonomous agent operates by frequent iteration of sense-process-act cycles

IDA's Cognitive Cycle

- Every autonomous agent must frequently sample its environment and act on it
- Cognition is the process of interpreting incoming stimuli and selecting actions
- The cognitive cycle fleshes out the stimulus-cognition-action process
- Provides a tool for the fine-grained analysis of various cognitive tasks

Cognitive Cycles

- In humans each cognitive cycle takes about 200ms
- An automatized cycle would take less time
- Cognitive cycles can cascade
- Cycles must maintain the seriality of consciousness
- Unconscious activity on each side of the conscious broadcast can operate in parallel
- Humans might have five to ten cognitive cycles per second

Steps in the Cognitive Cycle

- 1. Perception
- 2. Working memory
- 3. Local associations
- 4. Competition for consciousness
- 5. Conscious broadcast

- 6. Learning & recruiting resources
- 7. Setting goal-context hierarchy
- 8. Action chosen
- 9. Action taken

Perceiving

- Preconscious perception
- External or internal stimuli
- Construction of meaning
 - Identification
 - Categorization
 - Relations
- Includes feelings and emotions
- Filtering process produces a percept

Store Percept in Working Memory

- Percept stored in preconscious buffers of Working Memory
 - Visuo-spatial sketchpad
 - Phonological loop
- Buffers may contain earlier contents also
- Decay time measured in tens of seconds

Local Associations

- Contents of preconscious Working Memory buffers serve as a cue
- Retrieves local associations from
 - Transient episodic memory
 - Declarative memory
- Contents of WM plus these associations enter
 - Baddeley's episodic buffer
 - Ericsson and Kintsch's Long-term Working Memory
- May include feelings, emotions, actions

Competition for Consciousness

- Attention codelets view LTWM
- Form coalitions with information codelets
- Vie to bring various portions of contents to consciousness
- Coalition from a previous cycle can win

- Factors include
 - Relevancy
 - Importance
 - Urgency
 - Insistence
 - Recency

Conscious Broadcast

- Coalition with highest average activation is chosen
- Is said to be in the spotlight, or to occupy the global workspace
- The information content of the coalition is broadcast to all codelets
- GW theory postulates this broadcast as the moment of phenomenal consciousness

Setting Goal Context Hierarchy

- Relevant behavior codelets respond to broadcast
- Instantiate goal context hierarchy (behavior stream) if needed
- Bind variables using information from conscious broadcast
- Send environmental and feeling activation to appropriate behaviors

Action Chosen

- Behaviors (goal contexts) get activation from
 - Drives (feelings and emotions)
 - Environment
 - Other behaviors
- The single behavior is chosen that
 - Is executable
 - activation over threshold
 - higher activation than other such behaviors

Action Taken

- Chosen behavior binds variables in its behavior codelets
- Then releases its behavior codelets along with at least one expectation codelet
- These behavior codelets perform the task of the behavior
- This action may effect the external or internal environment or both
- Action doesn't occur when dreaming

Processes requiring multiple cycles

- Deliberation
- Volition
- Non-routine problem solving
- Language understanding & generation
- Metacognition

Consciously Mediated Action vs. Voluntary Action Selection

- Voluntary action selection
 - Go to the fridge for orange juice
 - Choice between go or wait, orange juice or coke or water
- Consciously mediated action
 - Find and grasp the handle
- Automatized, unconscious actions
 - Pull the refrigerator door open

IDA Totally Hand Crafted

LIDA — Learning IDA

LIDA is IDA with learning added

Learning occurs

- Perceptual learning
 - Identification, classification, relations
- Episodic learning
 - To transient episodic memory
 - Doesn't happen during dreaming
- Procedural learning
 - Reinforces actions from previous cycles

LIDA Cognitive Cycle

Learning Mechanisms in the LIDA Technology

- Perceptual learning via a Slipnet
- Episodic learning via Sparse Distributed Memory

 Procedural learning via a Scheme Net QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

A mechanism for perceptual learning

- Semantic net with activation passing
- Nodes represent features, individuals, categories, relations (situations)
- Links, excitatory (isa), inhibitory (lateral)
- Total activation = current + base-level
- Percept composed of nodes over threshold
- Learning modifies base-level activation and creates new nodes and links

A mechanism for episodic learning

- Sparse distributed memory
 - Few hard locations, HUGE address space
 - Each hard location contributes to the encoding of many different events
 - Each event is encoded to many different hard locations
- Associative and content addressable
- Psychological properties
 - Knows when it doesn't know
 - Tip of the tongue phenomena

A Mechanism for Procedural Learning

- Action selection via a scheme net
- Scheme (context, action, result, activation)
- Activation = current + base-level
- Learning reinforces base-level activation and creates new schemes
- Support multiple actions, both parallel and sequential

Modifying Base-level Activation

Decay Curve

- Low base-level activation rapid decay
- Saturated base-level activation almost no decay

Selectionist & Instructionalist Learning

- Selectionist Learning
 - selected for reinforcement from a redundant repertoire
- Instructionalist Learning
 - new representations constructed
- LIDA learns in both modes

LIDA Research Directions

- Domain-independent LIDA technology
 - Almost complete

October 3-5, 2004

- Control of real-world cognitive robots
 - Collaboration with roboticists (Kawamura, etc.)
- Cognitive software agent controller for an image database
 - DARPA funding pending

Learning

- Consciousness suffices for learning
- Learning rate rises with arousal (feelings and emotions)
- Learning occurs quickly and easily, but decays rapidly

Email and Web Addresses

- Stan Franklin
 - franklin@memphis.edu
 - www.cs.memphis.edu/~franklin
- "Conscious" Software Research Group
 - www.cs.memphis.edu/~csrg

