

How Minds Work Behavior Nets

Stan Franklin

Computer Science Division & Institute for Intelligent Systems The University of Memphis

Desired Characteristics

- Goal oriented
- Opportunistic
- Persistent
- Able to plan ahead
- Robust
- Reactive
- Fast

- Note lack of independence
- Tradeoffs needed
- Optimality not asked for
- Good enough will do

Competence Modules

- Simple
- Interactive
- Mindless
- Each with a specific competence
- Like processors, codelets, demons, schema

A Competence Module

- Much like a production rule, demon, schema
- Preconditions environmental facts required for the competence to be performed
- An action
- Additions and deletions facts to be added or deleted after the action is taken
- Activation a number, some kind of strength level

The Behavior Network

- Competence module = node of a digraph
- links are completely determined by the competence modules
 - Successor links
 - Predecessor links
 - Conflictor links

Successor links

successor links

Predecessor links

successor links predecessor links

Conflictor links

successor links predecessor links conflictor links

Activation Comes From

- Activation stored by the competence modules
- from the environment
- from built-in, global goals

Environmental Activation

- Environment activation for each true precondition
- The more true preconditions, the more relevant the competence is
- This source of activation allows the system to be opportunistic

Goal Activation

- If a competence satisfies a goal, the goal will send activation
- This source of activation tends to make the system goal directed
- A completed goal inhibits any competence that will undo it

Activation Along Successor Links

- Activation spread from competence to competence along links
- Along successor links, one competence strengthens those competencies whose preconditions it can help fulfill

Activation Along Predecessor & Conflictor Links

- Along predecessor links, a competence strengthens any other that fulfills one of its own preconditions
- Along a conflictor link a competence inhibits any other that can undo one of its true preconditions
- Every conflictor link is inhibitory

Executable Competence

- Call a competence module executable if all of its preconditions are satisfied
- The competence is ready to fire, although it may well not

Behavior Net Loop

- Add activation from environment and goals
- Spread activation forward and backward among the competence modules
- Decay total activation remains constant
- Competence fires if
 - it's executable and
 - it's over threshold and
 - it's the maximum such
- If one competence fires, its activation is zero, and threshold returns to normal
- If none fires, reduce threshold by 10%

Global Parameters

- Activation threshold
 - Raising it makes the system more thoughtful,
 - Lowering makes it more reactive
- Activation added for each satisfied precondition
 - Increasing makes the system more opportunistic
- Activation for being able to satisfy a goal
 - Increasing leads to more goal-oriented behavior
- Last two parameters tradeoff, since goal orientation and opportunism are opposite
- · Parameters remain constant during a run

Plans

- Sequence of competencies transform present situation into desired one
- Sequence can become highly activated by forward spreading from current state
 & backward spreading from a goal state
- May occur in competition with other sequences striving towards other goals

Really a Plan?

- An outside observer might call it a plan
- System doesn't use it as a plan
- Plan seems to exist only in the likelihood for execution of its competencies
- No centralized preprogrammed search processing results in cheaper operation than traditional planning methods

Problems with Behavior Nets

- No variables preconditions & add & delete list composed of propositions
- Causes computational explosion
- No learning must be hand crafted
- Expensive to produce

Readings

- Maes, P. 1989. How to do the right thing.
 Connection Science 1:291-323
- Franklin, S. 1995. Artificial Minds.
 Cambridge MA: MIT Press

Email and Web Addresses

- Stan Franklin
 - franklin@memphis.edu
 - www.cs.memphis.edu/~franklin
- "Conscious" Software Research Group
 - www. csrg.memphis.edu/

